Climate warming is significantly influenced by rising summer maximum temperatures: insights from tree-ring evidence of the Western Tianshan Mountains, China
{"title":"Climate warming is significantly influenced by rising summer maximum temperatures: insights from tree-ring evidence of the Western Tianshan Mountains, China","authors":"Meng Ren, Yu Liu, Qiufang Cai, Qiang Li, Huiming Song, Changfeng Sun","doi":"10.1007/s11676-024-01715-9","DOIUrl":null,"url":null,"abstract":"<p>As one of the regions most affected by global climate warming, the Tianshan mountains has experienced several ecological crises, including retreating glaciers and water deficits. Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures, while the influence of maximum temperatures is unclear. In this study, a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer (June–August) maximum temperature (<i>T</i><sub>max6–8</sub>) variations from 1718 to 2017. The reconstruction explained 53.1% of the variance in the observed <i>T</i><sub>max6–8</sub>. Over the past 300 years, the <i>T</i><sub>max6–8</sub> reconstruction showed clear interannual and decadal variabilities. There was a significant warming trend (0.18 °C/decade) after the 1950s, which was close to the increasing rates of the minimum and mean temperatures. The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased. The <i>T</i><sub>max6-8</sub> variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation. This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.</p>","PeriodicalId":15830,"journal":{"name":"Journal of Forestry Research","volume":"16 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forestry Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11676-024-01715-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the regions most affected by global climate warming, the Tianshan mountains has experienced several ecological crises, including retreating glaciers and water deficits. Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures, while the influence of maximum temperatures is unclear. In this study, a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer (June–August) maximum temperature (Tmax6–8) variations from 1718 to 2017. The reconstruction explained 53.1% of the variance in the observed Tmax6–8. Over the past 300 years, the Tmax6–8 reconstruction showed clear interannual and decadal variabilities. There was a significant warming trend (0.18 °C/decade) after the 1950s, which was close to the increasing rates of the minimum and mean temperatures. The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased. The Tmax6-8 variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation. This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
期刊介绍:
The Journal of Forestry Research (JFR), founded in 1990, is a peer-reviewed quarterly journal in English. JFR has rapidly emerged as an international journal published by Northeast Forestry University and Ecological Society of China in collaboration with Springer Verlag. The journal publishes scientific articles related to forestry for a broad range of international scientists, forest managers and practitioners.The scope of the journal covers the following five thematic categories and 20 subjects:
Basic Science of Forestry,
Forest biometrics,
Forest soils,
Forest hydrology,
Tree physiology,
Forest biomass, carbon, and bioenergy,
Forest biotechnology and molecular biology,
Forest Ecology,
Forest ecology,
Forest ecological services,
Restoration ecology,
Forest adaptation to climate change,
Wildlife ecology and management,
Silviculture and Forest Management,
Forest genetics and tree breeding,
Silviculture,
Forest RS, GIS, and modeling,
Forest management,
Forest Protection,
Forest entomology and pathology,
Forest fire,
Forest resources conservation,
Forest health monitoring and assessment,
Wood Science and Technology,
Wood Science and Technology.