{"title":"Inverse dynamics analysis of a 6-RR-RP-RR parallel manipulator with offset universal joints","authors":"Huze Huang, Hasiaoqier Han, Dawei Li, Zhenbang Xu, Qingwen Wu","doi":"10.1017/s0263574724000365","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.</p>","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000365","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.