Free groups generated by two unipotent maps

IF 1 3区 数学 Q1 MATHEMATICS
Chao Jiang, Baohua Xie
{"title":"Free groups generated by two unipotent maps","authors":"Chao Jiang, Baohua Xie","doi":"10.1515/forum-2023-0442","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>A</jats:italic> and <jats:italic>B</jats:italic> be two unipotent elements of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>SU</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0442_eq_0338.png\" /> <jats:tex-math>{\\mathrm{SU}(2,1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with distinct fixed points. In [S. B. Kalane and J. R. Parker, Free groups generated by two parabolic maps, Math. Z. 303 2023, 1, Paper No. 9], the authors gave several conditions that guarantee the subgroup <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0442_eq_0313.png\" /> <jats:tex-math>{\\langle A,B\\rangle}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is discrete and free by using Klein’s combination theorem. We will improve their conditions by using a variant of Klein’s combination theorem. With the same arguments and the additional assumption that <jats:italic>AB</jats:italic> is unipotent, we also extend Parker and Will’s condition that guarantees the subgroup <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0442_eq_0313.png\" /> <jats:tex-math>{\\langle A,B\\rangle}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is discrete and free in [J. R. Parker and P. Will, A complex hyperbolic Riley slice, Geom. Topol. 21 2017, 6, 3391–3451].","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0442","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A and B be two unipotent elements of SU ( 2 , 1 ) {\mathrm{SU}(2,1)} with distinct fixed points. In [S. B. Kalane and J. R. Parker, Free groups generated by two parabolic maps, Math. Z. 303 2023, 1, Paper No. 9], the authors gave several conditions that guarantee the subgroup A , B {\langle A,B\rangle} is discrete and free by using Klein’s combination theorem. We will improve their conditions by using a variant of Klein’s combination theorem. With the same arguments and the additional assumption that AB is unipotent, we also extend Parker and Will’s condition that guarantees the subgroup A , B {\langle A,B\rangle} is discrete and free in [J. R. Parker and P. Will, A complex hyperbolic Riley slice, Geom. Topol. 21 2017, 6, 3391–3451].
由两个单能映射生成的自由群
设 A 和 B 是 SU ( 2 , 1 ) {\mathrm{SU}(2,1)} 的两个单能元,它们有不同的定点。在 [S. B. Kalane 和 J. R. Parker.B. Kalane and J. R. Parker, Free groups generated by two parabolic maps, Math. Z. 303 2023, 1.Z. 303 2023, 1, Paper No. 9]中,作者给出了几个条件,利用克莱因组合定理保证子群 〈 A , B 〉 {\langle A,B\rangle} 是离散和自由的。我们将利用克莱因组合定理的一个变体来改进它们的条件。通过同样的论证和 AB 是单能的这一额外假设,我们还扩展了帕克和威尔在 [J. R. Parker and P. Will] 中提出的保证子群 〈 A , B 〉 {\langle A,B\rangle} 是离散和自由的条件。R. Parker and P. Will, A complex hyperbolic Riley slice, Geom.Topol.21 2017, 6, 3391-3451].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信