On the Iwasawa main conjecture for generalized Heegner classes in a quaternionic setting

IF 1 3区 数学 Q1 MATHEMATICS
Maria Rosaria Pati
{"title":"On the Iwasawa main conjecture for generalized Heegner classes in a quaternionic setting","authors":"Maria Rosaria Pati","doi":"10.1515/forum-2023-0141","DOIUrl":null,"url":null,"abstract":"We prove one divisibility relation of the anticyclotomic Iwasawa Main Conjecture for a higher weight ordinary modular form <jats:italic>f</jats:italic> and an imaginary quadratic field satisfying a “relaxed” Heegner hypothesis. Let Λ be the anticyclotomic Iwasawa algebra. Following the approach of Howard and Longo–Vigni, we construct the Λ-adic Kolyvagin system of generalized Heegner classes coming from Heegner points on a suitable Shimura curve. As its application, we also prove one divisibility relation in the Iwasawa–Greenberg main conjecture for the <jats:italic>p</jats:italic>-adic <jats:italic>L</jats:italic>-function defined by Magrone.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0141","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove one divisibility relation of the anticyclotomic Iwasawa Main Conjecture for a higher weight ordinary modular form f and an imaginary quadratic field satisfying a “relaxed” Heegner hypothesis. Let Λ be the anticyclotomic Iwasawa algebra. Following the approach of Howard and Longo–Vigni, we construct the Λ-adic Kolyvagin system of generalized Heegner classes coming from Heegner points on a suitable Shimura curve. As its application, we also prove one divisibility relation in the Iwasawa–Greenberg main conjecture for the p-adic L-function defined by Magrone.
关于四元环境中广义希格纳类的岩泽主猜想
我们证明了满足 "宽松 "希格纳假设的高权重普通模形式 f 和虚二次域的反周岩泽主猜想的一个可分性关系。让Λ成为反周岩泽代数。按照霍华德(Howard)和隆戈-维尼(Longo-Vigni)的方法,我们从合适的志村曲线上的 Heegner 点出发,构建了广义 Heegner 类的Λ-adic Kolyvagin 系统。作为其应用,我们还证明了岩泽-格林伯格主猜想中关于马格隆定义的 p-adic L 函数的可分性关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信