{"title":"Toda and Laguerre–Freud equations and tau functions for hypergeometric discrete multiple orthogonal polynomials","authors":"Itsaso Fernández-Irisarri, Manuel Mañas","doi":"10.1007/s13324-024-00876-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the authors investigate the case of discrete multiple orthogonal polynomials with two weights on the step line, which satisfy Pearson equations. The discrete multiple orthogonal polynomials in question are expressed in terms of <span>\\(\\tau \\)</span>-functions, which are <i>double</i> Wronskians of generalized hypergeometric series. The shifts in the spectral parameter for type II and type I multiple orthogonal polynomials are described using banded matrices. It is demonstrated that these polynomials offer solutions to multicomponent integrable extensions of the nonlinear Toda equations. Additionally, the paper characterizes extensions of the Nijhoff–Capel totally discrete Toda equations. The hypergeometric <span>\\(\\tau \\)</span>-functions are shown to provide solutions to these integrable nonlinear equations. Furthermore, the authors explore Laguerre–Freud equations, nonlinear equations for the recursion coefficients, with a particular focus on the multiple Charlier, generalized multiple Charlier, multiple Meixner II, and generalized multiple Meixner II cases.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00876-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00876-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the authors investigate the case of discrete multiple orthogonal polynomials with two weights on the step line, which satisfy Pearson equations. The discrete multiple orthogonal polynomials in question are expressed in terms of \(\tau \)-functions, which are double Wronskians of generalized hypergeometric series. The shifts in the spectral parameter for type II and type I multiple orthogonal polynomials are described using banded matrices. It is demonstrated that these polynomials offer solutions to multicomponent integrable extensions of the nonlinear Toda equations. Additionally, the paper characterizes extensions of the Nijhoff–Capel totally discrete Toda equations. The hypergeometric \(\tau \)-functions are shown to provide solutions to these integrable nonlinear equations. Furthermore, the authors explore Laguerre–Freud equations, nonlinear equations for the recursion coefficients, with a particular focus on the multiple Charlier, generalized multiple Charlier, multiple Meixner II, and generalized multiple Meixner II cases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.