On arithmetic quotients of the group SL2 over a quaternion division k-algebra

IF 1 3区 数学 Q1 MATHEMATICS
Sophie Koch, Joachim Schwermer
{"title":"On arithmetic quotients of the group SL2 over a quaternion division k-algebra","authors":"Sophie Koch, Joachim Schwermer","doi":"10.1515/forum-2023-0422","DOIUrl":null,"url":null,"abstract":"Given a totally real algebraic number field <jats:italic>k</jats:italic> of degree <jats:italic>s</jats:italic>, we consider locally symmetric spaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>X</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>/</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0351.png\" /> <jats:tex-math>{X_{G}/\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> associated with arithmetic subgroups Γ of the special linear algebraic <jats:italic>k</jats:italic>-group <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:msub> <m:mi>SL</m:mi> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>D</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0183.png\" /> <jats:tex-math>{G=\\mathrm{SL}_{M_{2}(D)}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, attached to a quaternion division <jats:italic>k</jats:italic>-algebra <jats:italic>D</jats:italic>. The group <jats:italic>G</jats:italic> is <jats:italic>k</jats:italic>-simple, of <jats:italic>k</jats:italic>-rank one, and non-split over <jats:italic>k</jats:italic>. Using reduction theory, one can construct an open subset <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>Y</m:mi> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo>⊂</m:mo> <m:mrow> <m:msub> <m:mi>X</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>/</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0361.png\" /> <jats:tex-math>{Y_{\\Gamma}\\subset X_{G}/\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> such that its closure <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mover accent=\"true\"> <m:mi>Y</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0583.png\" /> <jats:tex-math>{\\overline{Y}_{\\Gamma}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a compact manifold with boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:msub> <m:mover accent=\"true\"> <m:mi>Y</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0588.png\" /> <jats:tex-math>{\\partial\\overline{Y}_{\\Gamma}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the inclusion <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mover accent=\"true\"> <m:mi>Y</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> <m:mo>→</m:mo> <m:mrow> <m:msub> <m:mi>X</m:mi> <m:mi>G</m:mi> </m:msub> <m:mo>/</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0582.png\" /> <jats:tex-math>{\\overline{Y}_{\\Gamma}\\rightarrow X_{G}/\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a homotopy equivalence. The connected components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>Y</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>P</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0360.png\" /> <jats:tex-math>{Y^{[P]}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of the boundary <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:msub> <m:mover accent=\"true\"> <m:mi>Y</m:mi> <m:mo>¯</m:mo> </m:mover> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0588.png\" /> <jats:tex-math>{\\partial\\overline{Y}_{\\Gamma}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are in one-to-one correspondence with the finite set of Γ-conjugacy classes of minimal parabolic <jats:italic>k</jats:italic>-subgroups of <jats:italic>G</jats:italic>. We show that each boundary component carries the natural structure of a torus bundle. Firstly, if the quaternion division <jats:italic>k</jats:italic>-algebra <jats:italic>D</jats:italic> is totally definite, that is, <jats:italic>D</jats:italic> ramifies at all archimedean places of <jats:italic>k</jats:italic>, we prove that the basis of this bundle is homeomorphic to the torus <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>T</m:mi> <m:mrow> <m:mi>s</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0323.png\" /> <jats:tex-math>{T^{s-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of dimension <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>s</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0728.png\" /> <jats:tex-math>{s-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, has the compact fibre <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>T</m:mi> <m:mrow> <m:mn>4</m:mn> <m:mo>⁢</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0318.png\" /> <jats:tex-math>{T^{4s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and its structure group is <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>SL</m:mi> <m:mrow> <m:mn>4</m:mn> <m:mo>⁢</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ℤ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0518.png\" /> <jats:tex-math>{\\mathrm{SL}_{4s}(\\mathbb{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We determine the cohomology of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>Y</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>P</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0360.png\" /> <jats:tex-math>{Y^{[P]}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Secondly, if the quaternion division <jats:italic>k</jats:italic>-algebra <jats:italic>D</jats:italic> is indefinite, thus, there exists at least one archimedean place <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mi>V</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:msub> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0745.png\" /> <jats:tex-math>{v\\in V_{k,\\infty}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> at which <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>D</m:mi> <m:mi>v</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0166.png\" /> <jats:tex-math>{D_{v}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> splits over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℝ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0463.png\" /> <jats:tex-math>{\\mathbb{R}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, that is, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>D</m:mi> <m:mi>v</m:mi> </m:msub> <m:mo>≅</m:mo> <m:mrow> <m:msub> <m:mi>M</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ℝ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0163.png\" /> <jats:tex-math>{D_{v}\\cong M_{2}(\\mathbb{R})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the fibre is homeomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>T</m:mi> <m:mrow> <m:mn>4</m:mn> <m:mo>⁢</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0422_eq_0318.png\" /> <jats:tex-math>{T^{4s}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, but the base space of the bundle is more complicated.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0422","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a totally real algebraic number field k of degree s, we consider locally symmetric spaces X G / Γ {X_{G}/\Gamma} associated with arithmetic subgroups Γ of the special linear algebraic k-group G = SL M 2 ( D ) {G=\mathrm{SL}_{M_{2}(D)}} , attached to a quaternion division k-algebra D. The group G is k-simple, of k-rank one, and non-split over k. Using reduction theory, one can construct an open subset Y Γ X G / Γ {Y_{\Gamma}\subset X_{G}/\Gamma} such that its closure Y ¯ Γ {\overline{Y}_{\Gamma}} is a compact manifold with boundary Y ¯ Γ {\partial\overline{Y}_{\Gamma}} , and the inclusion Y ¯ Γ X G / Γ {\overline{Y}_{\Gamma}\rightarrow X_{G}/\Gamma} is a homotopy equivalence. The connected components Y [ P ] {Y^{[P]}} of the boundary Y ¯ Γ {\partial\overline{Y}_{\Gamma}} are in one-to-one correspondence with the finite set of Γ-conjugacy classes of minimal parabolic k-subgroups of G. We show that each boundary component carries the natural structure of a torus bundle. Firstly, if the quaternion division k-algebra D is totally definite, that is, D ramifies at all archimedean places of k, we prove that the basis of this bundle is homeomorphic to the torus T s - 1 {T^{s-1}} of dimension s - 1 {s-1} , has the compact fibre T 4 s {T^{4s}} , and its structure group is SL 4 s ( ) {\mathrm{SL}_{4s}(\mathbb{Z})} . We determine the cohomology of Y [ P ] {Y^{[P]}} . Secondly, if the quaternion division k-algebra D is indefinite, thus, there exists at least one archimedean place v V k , {v\in V_{k,\infty}} at which D v {D_{v}} splits over {\mathbb{R}} , that is, D v M 2 ( ) {D_{v}\cong M_{2}(\mathbb{R})} , the fibre is homeomorphic to T 4 s {T^{4s}} , but the base space of the bundle is more complicated.
论四元除法 k 代数上 SL2 群的算术商
给定阶数为 s 的全实代数数域 k,我们考虑与特殊线性代数 k 群 G = SL M 2 ( D ) {G=\mathrm{SL}_{M_{2}(D)}} 的算术子群 Γ 相关联的局部对称空间 X G /Γ {X_{G}/\Gamma} 。 群 G 是 k 简单的、k秩为 1 的、对 k 非分裂的。利用还原理论,我们可以构造一个开放子集 Y Γ ⊂ X G / Γ {Y_{Gamma}\subset X_{G}//{Gamma},使得它的闭包 Y ¯ Γ {\overline{Y}_{Gamma} 是一个边界为 ∂ Y ¯ Γ {partial\overline{Y}_{Gamma} 的紧凑流形。} 包含 Y ¯ Γ → X G / Γ {\overline{Y}_{\Gamma}}/rightarrow X_{G}/\Gamma} 是同调等价的。边界 ∂ Y ¯ Γ {\partial\overline{Y}_{Gamma} 的连通分量 Y [ P ] {Y^{[P]}} 与 G 的最小抛物 k 子群的有限集合 Γ 共轭类一一对应。首先,如果四元除法 k 代数 D 是全定的,即 D 在 k 的所有阿基米德位置上都是斜的,那么我们证明这个束的基础与维数为 s - 1 {s-1} 的环 T s - 1 {T^{s-1} 是同构的,具有紧凑纤维 T 4 s {T^{4s}} ,其结构群是 SL 4 s {T^{4s}} 。 其结构群为 SL 4 s ( ℤ ) {\mathrm{SL}_{4s}(\mathbb{Z})} 。我们确定了 Y [ P ] {Y^{[P]}} 的同调。其次,如果四元数除 k 代数 D 是不确定的,那么至少存在一个拱顶位置 v∈V k , ∞ {v\in V_{k,\infty}} ,在这个位置上 D v {D_{v}} 分裂于 ℝ {\mathbb{R}} 。 即 D v ≅ M 2 ( ℝ ) {D_{v}\cong M_{2}(\mathbb{R})} ,纤维是同构的。 ,纤维与 T 4 s {T^{4s}} 同构。 但是束的基空间更为复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信