{"title":"A phase field model for ductile fracture considering the strain rate, stress triaxiality and Lode angle parameter","authors":"Tao Gu, Zhanjiang Wang, Pengfei Ran","doi":"10.1007/s10704-024-00770-x","DOIUrl":null,"url":null,"abstract":"<div><p>Ductile materials exhibit rate-dependent behaviors when subjected to different loading rates, particularly during impact and explosion events. In order to investigate the high strain rate behaviors of metal materials, a phase field model considered the rate-dependent threshold for effective plastic work is proposed. And the presented model couples the influences of the stress triaxiality and Lode angle parameter on failure behaviors. Later, a single element is modeled to demonstrate the impacts of the model in predicting stress-strain relations under varying loading rates. To illustrate the impacts of the Lode angle parameter on load-displacement responses, rectangular notch specimens are used. Next, the presented model is employed to mimic the shear fracture of hat-shaped specimens at different strain rates based on the split Hopkinson pressure bar tests, and the model parameters are calibrated by comparing the strain waveforms between the simulations and experiments. The numerical results indicate the developed model is capable of accurately reproducing the shear ductile fracture of the hat-shaped specimens under high strain rates.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 1","pages":"59 - 76"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00770-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ductile materials exhibit rate-dependent behaviors when subjected to different loading rates, particularly during impact and explosion events. In order to investigate the high strain rate behaviors of metal materials, a phase field model considered the rate-dependent threshold for effective plastic work is proposed. And the presented model couples the influences of the stress triaxiality and Lode angle parameter on failure behaviors. Later, a single element is modeled to demonstrate the impacts of the model in predicting stress-strain relations under varying loading rates. To illustrate the impacts of the Lode angle parameter on load-displacement responses, rectangular notch specimens are used. Next, the presented model is employed to mimic the shear fracture of hat-shaped specimens at different strain rates based on the split Hopkinson pressure bar tests, and the model parameters are calibrated by comparing the strain waveforms between the simulations and experiments. The numerical results indicate the developed model is capable of accurately reproducing the shear ductile fracture of the hat-shaped specimens under high strain rates.
韧性材料在承受不同加载速率时,尤其是在冲击和爆炸事件中,会表现出速率依赖性行为。为了研究金属材料的高应变速率行为,我们提出了一个相场模型,该模型考虑了有效塑性功的速率相关阈值。该模型结合了应力三轴性和 Lode 角参数对破坏行为的影响。随后,对单个元素进行建模,以展示该模型在不同加载速率下对预测应力应变关系的影响。为了说明洛德角参数对载荷-位移响应的影响,使用了矩形缺口试样。接着,根据霍普金森压力棒分裂试验,采用所提出的模型模拟帽形试样在不同应变速率下的剪切断裂,并通过比较模拟和试验的应变波形校准模型参数。数值结果表明,所开发的模型能够准确再现高应变速率下帽形试样的剪切韧性断裂。
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.