{"title":"Solutions of the \n \n \n sl\n 2\n \n ${\\mathfrak {sl}_2}$\n qKZ equations modulo an integer","authors":"Evgeny Mukhin, Alexander Varchenko","doi":"10.1112/jlms.12884","DOIUrl":null,"url":null,"abstract":"<p>We study the <i>qKZ</i> difference equations with values in the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>th tensor power of the vector <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>${\\mathfrak {sl}_2}$</annotation>\n </semantics></math> representation <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math>, variables <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$z_1,\\dots,z_n$</annotation>\n </semantics></math>, and integer step <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>. For any integer <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> relatively prime to the step <span></span><math>\n <semantics>\n <mi>κ</mi>\n <annotation>$\\kappa$</annotation>\n </semantics></math>, we construct a family of polynomials <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>r</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_r(z)$</annotation>\n </semantics></math> in variables <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>z</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$z_1,\\dots,z_n$</annotation>\n </semantics></math> with values in <span></span><math>\n <semantics>\n <msup>\n <mi>V</mi>\n <mrow>\n <mo>⊗</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <annotation>$V^{\\otimes n}$</annotation>\n </semantics></math> such that the coordinates of these polynomials with respect to the standard basis of <span></span><math>\n <semantics>\n <msup>\n <mi>V</mi>\n <mrow>\n <mo>⊗</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n <annotation>$V^{\\otimes n}$</annotation>\n </semantics></math> are polynomials with integer coefficients. We show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>r</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_r(z)$</annotation>\n </semantics></math> satisfy the <i>qKZ</i> equations modulo <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. Polynomials <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>r</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$f_r(z)$</annotation>\n </semantics></math> are modulo <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> analogs of the hypergeometric solutions of the <i>qKZ</i> given in the form of multidimensional Barnes integrals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the qKZ difference equations with values in the th tensor power of the vector representation , variables , and integer step . For any integer relatively prime to the step , we construct a family of polynomials in variables with values in such that the coordinates of these polynomials with respect to the standard basis of are polynomials with integer coefficients. We show that satisfy the qKZ equations modulo . Polynomials are modulo analogs of the hypergeometric solutions of the qKZ given in the form of multidimensional Barnes integrals.
我们研究了在向量 sl 2 ${mathfrak {sl}_2}$ 表示 V $V$ 的 n $n$ 张量幂中取值的 qKZ 差分方程,变量 z 1 , ⋯ , z n $z_1,\dots,z_n$ 以及整数步长 κ $\kappa$ 。对于与步长 κ $kappa$ 相对质数的任意整数 N $N$ ,我们构造了变量 z 1 , ⋯ , z n $z_1,\dots,z_n$ 在 V ⊗ n $V^{otimes n}$ 中取值的多项式 f r ( z ) $f_r(z)$ 族,使得这些多项式相对于 V ⊗ n $V^{otimes n}$ 的标准基的坐标是具有整数系数的多项式。我们证明 f r ( z ) $f_r(z)$ 满足模为 N $N$ 的 qKZ 方程。多项式 f r ( z ) $f_r(z)$ 是以多维巴恩斯积分形式给出的 qKZ 超几何解的 N $N$ 模类似物。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.