Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment

IF 1 3区 数学 Q1 MATHEMATICS
Jakub Przybyło
{"title":"Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment","authors":"Jakub Przybyło","doi":"10.1016/j.ejc.2024.103961","DOIUrl":null,"url":null,"abstract":"<div><p>Given an edge <span><math><mi>k</mi></math></span>-weighting <span><math><mrow><mi>ω</mi><mo>:</mo><mi>E</mi><mo>→</mo><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, the weighted degree of a vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> is the sum of its incident weights. The least <span><math><mi>k</mi></math></span> for which there exists an edge <span><math><mi>k</mi></math></span>-weighting such that the resulting weighted degrees of the vertices at distance at most <span><math><mi>r</mi></math></span> in <span><math><mi>G</mi></math></span> are distinct is called the <span><math><mi>r</mi></math></span>-distant irregularity strength, and denoted <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This concept links the well-known 1–2–3 Conjecture, corresponding to <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, with the irregularity strength of graphs, <span><math><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which coincides with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mi>r</mi></math></span> at least the diameter of <span><math><mi>G</mi></math></span>. It is believed that for every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the maximum degree of <span><math><mi>G</mi></math></span>, while it is known that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>6</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> in general and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>4</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for graphs with minimum degree <span><math><mi>δ</mi></math></span> at least <span><math><mrow><msup><mrow><mo>log</mo></mrow><mrow><mn>8</mn></mrow></msup><mi>Δ</mi></mrow></math></span>. We apply the probabilistic method in order to improve these results and show that graphs with <span><math><mrow><mi>δ</mi><mo>≫</mo><mo>ln</mo><mi>Δ</mi></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> as <span><math><mrow><mi>Δ</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an edge k-weighting ω:E[k] of a graph G=(V,E), the weighted degree of a vertex vV is the sum of its incident weights. The least k for which there exists an edge k-weighting such that the resulting weighted degrees of the vertices at distance at most r in G are distinct is called the r-distant irregularity strength, and denoted sr(G). This concept links the well-known 1–2–3 Conjecture, corresponding to s1(G), with the irregularity strength of graphs, s(G), which coincides with sr(G) for every r at least the diameter of G. It is believed that for every r2, sr(G)(1+o(1))Δr1, where Δ is the maximum degree of G, while it is known that sr(G)6Δr1 in general and sr(G)(4+o(1))Δr1 for graphs with minimum degree δ at least log8Δ. We apply the probabilistic method in order to improve these results and show that graphs with δlnΔ satisfy sr(G)(e+o(1))Δr1 as Δ.

通过非均匀偏置随机权重分配限定图的远距离不规则性强度
给定图 G=(V,E)的边 k 加权 ω:E→[k],顶点 v∈V 的加权度是其入射加权的总和。存在边 k 加权的最小 k,使得 G 中最多相距 r 的顶点的加权度是不同的,称为 r 距离不规则度强度,记为 sr(G)。这一概念将著名的 1-2-3 猜想(对应于 s1(G))与图的不规则性强度 s(G) 联系起来,在每 r 至少为 G 的直径时,s(G) 与 sr(G) 重合。一般认为,对于每 r≥2 的图,sr(G)≤(1+o(1))Δr-1,其中 Δ 是 G 的最大度数,而已知一般情况下 sr(G)≤6Δr-1 ,对于最小度数 δ 至少为 log8Δ 的图,sr(G)≤(4+o(1))Δr-1。我们应用概率方法来改进这些结果,并证明δ≫lnΔ的图在Δ→∞时满足 sr(G)≤(e+o(1))Δr-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信