{"title":"Bounding the distant irregularity strength of graphs via a non-uniformly biased random weight assignment","authors":"Jakub Przybyło","doi":"10.1016/j.ejc.2024.103961","DOIUrl":null,"url":null,"abstract":"<div><p>Given an edge <span><math><mi>k</mi></math></span>-weighting <span><math><mrow><mi>ω</mi><mo>:</mo><mi>E</mi><mo>→</mo><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></mrow></math></span> of a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, the weighted degree of a vertex <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> is the sum of its incident weights. The least <span><math><mi>k</mi></math></span> for which there exists an edge <span><math><mi>k</mi></math></span>-weighting such that the resulting weighted degrees of the vertices at distance at most <span><math><mi>r</mi></math></span> in <span><math><mi>G</mi></math></span> are distinct is called the <span><math><mi>r</mi></math></span>-distant irregularity strength, and denoted <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. This concept links the well-known 1–2–3 Conjecture, corresponding to <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, with the irregularity strength of graphs, <span><math><mrow><mi>s</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which coincides with <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for every <span><math><mi>r</mi></math></span> at least the diameter of <span><math><mi>G</mi></math></span>. It is believed that for every <span><math><mrow><mi>r</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, where <span><math><mi>Δ</mi></math></span> is the maximum degree of <span><math><mi>G</mi></math></span>, while it is known that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>6</mn><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> in general and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mn>4</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> for graphs with minimum degree <span><math><mi>δ</mi></math></span> at least <span><math><mrow><msup><mrow><mo>log</mo></mrow><mrow><mn>8</mn></mrow></msup><mi>Δ</mi></mrow></math></span>. We apply the probabilistic method in order to improve these results and show that graphs with <span><math><mrow><mi>δ</mi><mo>≫</mo><mo>ln</mo><mi>Δ</mi></mrow></math></span> satisfy <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>(</mo><mi>e</mi><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> as <span><math><mrow><mi>Δ</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given an edge -weighting of a graph , the weighted degree of a vertex is the sum of its incident weights. The least for which there exists an edge -weighting such that the resulting weighted degrees of the vertices at distance at most in are distinct is called the -distant irregularity strength, and denoted . This concept links the well-known 1–2–3 Conjecture, corresponding to , with the irregularity strength of graphs, , which coincides with for every at least the diameter of . It is believed that for every , , where is the maximum degree of , while it is known that in general and for graphs with minimum degree at least . We apply the probabilistic method in order to improve these results and show that graphs with satisfy as .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.