Uniform Diophantine approximation with restricted denominators

Pub Date : 2024-03-20 DOI:10.1016/j.jnt.2024.02.017
Bo Wang , Bing Li , Ruofan Li
{"title":"Uniform Diophantine approximation with restricted denominators","authors":"Bo Wang ,&nbsp;Bing Li ,&nbsp;Ruofan Li","doi":"10.1016/j.jnt.2024.02.017","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>b</mi><mo>≥</mo><mn>2</mn></math></span> be an integer and <span><math><mi>A</mi><mo>=</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> be a strictly increasing subsequence of positive integers with <span><math><mi>η</mi><mo>:</mo><mo>=</mo><munder><mrow><mi>lim sup</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac><mo>&lt;</mo><mo>+</mo><mo>∞</mo></math></span>. For each irrational real number <em>ξ</em>, we denote by <span><math><msub><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> the supremum of the real numbers <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> for which, for every sufficiently large integer <em>N</em>, the equation <span><math><mo>‖</mo><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></msup><mi>ξ</mi><mo>‖</mo><mo>&lt;</mo><msup><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>N</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></msup></math></span> has a solution <em>n</em> with <span><math><mn>1</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mi>N</mi></math></span>. For every <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>η</mi><mo>]</mo></math></span>, let <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> (<span><math><msubsup><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>) be the set of all real numbers <em>ξ</em> such that <span><math><msub><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>≥</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> (<span><math><msub><mrow><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>) respectively. In this paper, we give some results of the Hausdorfff dimensions of <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> and <span><math><msubsup><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span>. When <span><math><mi>η</mi><mo>=</mo><mn>1</mn></math></span>, we prove that the Hausdorfff dimensions of <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> and <span><math><msubsup><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> are equal to <span><math><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn><mo>−</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mn>1</mn><mo>+</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> for any <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. When <span><math><mi>η</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>⁡</mo><mfrac><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfrac></math></span> exists, we show that the Hausdorfff dimension of <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> is strictly less than <span><math><msup><mrow><mo>(</mo><mfrac><mrow><mi>η</mi><mo>−</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>η</mi><mo>+</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> for some <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>, which is different with the case <span><math><mi>η</mi><mo>=</mo><mn>1</mn></math></span>, and we give a lower bound of the Hausdorfff dimensions of <span><math><msub><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow></msub><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> and <span><math><msubsup><mrow><mover><mrow><mi>V</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></mrow><mrow><mi>b</mi><mo>,</mo><mi>A</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo></math></span> for any <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>η</mi><mo>]</mo></math></span>. Furthermore, we show that this lower bound can be reached for some <span><math><mover><mrow><mi>v</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let b2 be an integer and A=(an)n=1 be a strictly increasing subsequence of positive integers with η:=lim supnan+1an<+. For each irrational real number ξ, we denote by vˆb,A(ξ) the supremum of the real numbers vˆ for which, for every sufficiently large integer N, the equation banξ<(baN)vˆ has a solution n with 1nN. For every vˆ[0,η], let Vˆb,A(vˆ) (Vˆb,A(vˆ)) be the set of all real numbers ξ such that vˆb,A(ξ)vˆ (vˆb,A(ξ)=vˆ) respectively. In this paper, we give some results of the Hausdorfff dimensions of Vˆb,A(vˆ) and Vˆb,A(vˆ). When η=1, we prove that the Hausdorfff dimensions of Vˆb,A(vˆ) and Vˆb,A(vˆ) are equal to (1vˆ1+vˆ)2 for any vˆ[0,1]. When η>1 and limnan+1an exists, we show that the Hausdorfff dimension of Vˆb,A(vˆ) is strictly less than (ηvˆη+vˆ)2 for some vˆ, which is different with the case η=1, and we give a lower bound of the Hausdorfff dimensions of Vˆb,A(vˆ) and Vˆb,A(vˆ) for any vˆ[0,η]. Furthermore, we show that this lower bound can be reached for some vˆ.

分享
查看原文
有限制分母的均匀二叉近似
设 b≥2 为整数,A=(an)n=1∞ 为严格递增的正整数子序列,η:=lim supn→∞an+1an<+∞。对于每个无理实数ξ,我们用 vˆb,A(ξ)表示实数 vˆ的上确数,对于每一个足够大的整数 N,方程‖banξ‖<(baN)-vˆ有一个解 n,且 1≤n≤N。对于每一个 vˆ∈[0,η],设 Vˆb,A(vˆ)(Vˆb,A⁎(vˆ))是所有实数ξ的集合,使得 vˆb,A(ξ)≥vˆ(vˆb,A(ξ)=vˆ)。本文给出了 Vˆb,A(vˆ)和 Vˆb,A⁎(vˆ)的 Hausdorfff 维数的一些结果。当 η=1 时,我们证明对于任意 vˆ∈[0,1],Vˆb,A(vˆ) 和 Vˆb,A⁎(vˆ) 的 Hausdorfff 维数等于 (1-vˆ1+vˆ)2。当η>1且limn→∞an+1an存在时,我们证明了对于某个vˆ,Vˆb,A(vˆ)的Hausdorfff维度严格小于(η-vˆη+vˆ)2,这与η=1的情况不同,并且我们给出了对于任意vˆ∈[0,η],Vˆb,A(vˆ)和Vˆb,A⁎(vˆ)的Hausdorfff维度的下界。此外,我们还证明了对于某些 vˆ 可以达到这个下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信