Jonas Devos, Patrick Van Dijck, Wouter Van Genechten
{"title":"A multi-colour fluorogenic tag and its application in <i>Candida albicans</i>.","authors":"Jonas Devos, Patrick Van Dijck, Wouter Van Genechten","doi":"10.1099/mic.0.001451","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen <i>Candida albicans,</i> but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in <i>C. albicans</i>.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001451","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen Candida albicans, but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in C. albicans.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.