Sybille Fuld, Georgiana Constantinescu, Christina Pamporaki, Mirko Peitzsch, Manuel Schulze, Jun Yang, Lisa Müller, Aleksander Prejbisz, Andrzej Januszewicz, Hanna Remde, Lydia Kürzinger, Ulrich Dischinger, Matthias Ernst, Sven Gruber, Martin Reincke, Felix Beuschlein, Jacques W M Lenders, Graeme Eisenhofer
{"title":"Screening for Primary Aldosteronism by Mass Spectrometry Versus Immunoassay Measurements of Aldosterone: A Prospective Within-Patient Study.","authors":"Sybille Fuld, Georgiana Constantinescu, Christina Pamporaki, Mirko Peitzsch, Manuel Schulze, Jun Yang, Lisa Müller, Aleksander Prejbisz, Andrzej Januszewicz, Hanna Remde, Lydia Kürzinger, Ulrich Dischinger, Matthias Ernst, Sven Gruber, Martin Reincke, Felix Beuschlein, Jacques W M Lenders, Graeme Eisenhofer","doi":"10.1093/jalm/jfae017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Measurements of aldosterone by mass spectrometry are more accurate and less prone to interferences than immunoassay measurements, and may produce a more accurate aldosterone:renin ratio (ARR) when screening for primary aldosteronism (PA).</p><p><strong>Methods: </strong>Differences in diagnostic performance of the ARR using mass spectrometry vs immunoassay measurements of aldosterone were examined in 710 patients screened for PA. PA was confirmed in 153 patients and excluded in 451 others. Disease classifications were not achieved in 106 patients. Areas under receiver-operating characteristic curves (AUROC) and other measures were used to compare diagnostic performance.</p><p><strong>Results: </strong>Mass spectrometry-based measurements yielded lower plasma aldosterone concentrations than immunoassay measurements. For the ARR based on immunoassay measurements of aldosterone, AUROCs were slightly lower (P = 0.018) than those using mass spectrometry measurements (0.895 vs 0.906). The cutoff for the ARR to reach a sensitivity of 95% was 30 and 21.5 pmol/mU by respective immunoassay and mass spectrometry-based measurements, which corresponded to specificities of 57% for both. With data restricted to patients with unilateral PA, diagnostic sensitivities of 94% with specificities >81% could be achieved at cutoffs of 68 and 52 pmol/mU for respective immunoassay and mass spectrometry measurements.</p><p><strong>Conclusions: </strong>Mass spectrometry-based measurements of aldosterone for the ARR provide no clear diagnostic advantage over immunoassay-based measurements. Both approaches offer limited diagnostic accuracy for the ARR as a screening test. One solution is to employ the higher cutoffs to triage patients likely to have unilateral PA for further tests and possible adrenalectomy, while using the lower cutoffs to identify others for targeted medical therapy.German Clinical Trials Register ID: DRKS00017084.</p>","PeriodicalId":46361,"journal":{"name":"Journal of Applied Laboratory Medicine","volume":" ","pages":"752-766"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Laboratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jalm/jfae017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Measurements of aldosterone by mass spectrometry are more accurate and less prone to interferences than immunoassay measurements, and may produce a more accurate aldosterone:renin ratio (ARR) when screening for primary aldosteronism (PA).
Methods: Differences in diagnostic performance of the ARR using mass spectrometry vs immunoassay measurements of aldosterone were examined in 710 patients screened for PA. PA was confirmed in 153 patients and excluded in 451 others. Disease classifications were not achieved in 106 patients. Areas under receiver-operating characteristic curves (AUROC) and other measures were used to compare diagnostic performance.
Results: Mass spectrometry-based measurements yielded lower plasma aldosterone concentrations than immunoassay measurements. For the ARR based on immunoassay measurements of aldosterone, AUROCs were slightly lower (P = 0.018) than those using mass spectrometry measurements (0.895 vs 0.906). The cutoff for the ARR to reach a sensitivity of 95% was 30 and 21.5 pmol/mU by respective immunoassay and mass spectrometry-based measurements, which corresponded to specificities of 57% for both. With data restricted to patients with unilateral PA, diagnostic sensitivities of 94% with specificities >81% could be achieved at cutoffs of 68 and 52 pmol/mU for respective immunoassay and mass spectrometry measurements.
Conclusions: Mass spectrometry-based measurements of aldosterone for the ARR provide no clear diagnostic advantage over immunoassay-based measurements. Both approaches offer limited diagnostic accuracy for the ARR as a screening test. One solution is to employ the higher cutoffs to triage patients likely to have unilateral PA for further tests and possible adrenalectomy, while using the lower cutoffs to identify others for targeted medical therapy.German Clinical Trials Register ID: DRKS00017084.