Power Analysis for Human Melatonin Suppression Experiments.

IF 2.1 Q3 CLINICAL NEUROLOGY
Manuel Spitschan, Parisa Vidafar, Sean W Cain, Andrew J K Phillips, Ben C Lambert
{"title":"Power Analysis for Human Melatonin Suppression Experiments.","authors":"Manuel Spitschan, Parisa Vidafar, Sean W Cain, Andrew J K Phillips, Ben C Lambert","doi":"10.3390/clockssleep6010009","DOIUrl":null,"url":null,"abstract":"<p><p>In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.</p>","PeriodicalId":33568,"journal":{"name":"Clocks & Sleep","volume":"6 1","pages":"114-128"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clocks & Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clockssleep6010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.

人类褪黑激素抑制实验的功率分析
在人体中,松果体夜间分泌的褪黑激素会受到眼部光线照射的抑制。在实验室中,褪黑激素抑制是这一神经内分泌途径的生物标记。最近的研究发现,个体对光的褪黑激素抑制反应差异很大,最敏感的个体比最不敏感的个体敏感多达 60 倍。规划以褪黑激素抑制为结果的实验需要考虑到这些个体差异,尤其是在资源有限的常见情况下,在多个光照水平下进行受试者内研究不仅成本高昂、资源密集,而且可能无法满足受试者的要求。在这里,我们提出了一个结合贝叶斯统计模型的虚拟实验室褪黑激素抑制实验新框架。我们提供了一个用于功率分析的 Shiny 网络应用程序,允许用户修改各种实验参数(样本大小、个体水平异质性、统计显著性阈值、光照水平),并模拟灵敏度的系统性变化(例如,由于药物或其他干预)。我们的框架能帮助实验者设计出令人信服且稳健的研究,为了解褪黑激素抑制的潜在生物变异性提供了与实际应用相关的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clocks & Sleep
Clocks & Sleep Multiple-
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信