Manuel Spitschan, Parisa Vidafar, Sean W Cain, Andrew J K Phillips, Ben C Lambert
{"title":"Power Analysis for Human Melatonin Suppression Experiments.","authors":"Manuel Spitschan, Parisa Vidafar, Sean W Cain, Andrew J K Phillips, Ben C Lambert","doi":"10.3390/clockssleep6010009","DOIUrl":null,"url":null,"abstract":"<p><p>In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.</p>","PeriodicalId":33568,"journal":{"name":"Clocks & Sleep","volume":"6 1","pages":"114-128"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10969333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clocks & Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clockssleep6010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In humans, the nocturnal secretion of melatonin by the pineal gland is suppressed by ocular exposure to light. In the laboratory, melatonin suppression is a biomarker for this neuroendocrine pathway. Recent work has found that individuals differ substantially in their melatonin-suppressive response to light, with the most sensitive individuals being up to 60 times more sensitive than the least sensitive individuals. Planning experiments with melatonin suppression as an outcome needs to incorporate these individual differences, particularly in common resource-limited scenarios where running within-subjects studies at multiple light levels is costly and resource-intensive and may not be feasible with respect to participant compliance. Here, we present a novel framework for virtual laboratory melatonin suppression experiments, incorporating a Bayesian statistical model. We provide a Shiny web app for power analyses that allows users to modify various experimental parameters (sample size, individual-level heterogeneity, statistical significance threshold, light levels), and simulate a systematic shift in sensitivity (e.g., due to a pharmacological or other intervention). Our framework helps experimenters to design compelling and robust studies, offering novel insights into the underlying biological variability in melatonin suppression relevant for practical applications.