{"title":"Three-dimensional reconstruction of industrial parts from a single image.","authors":"Zhenxing Xu, Aizeng Wang, Fei Hou, Gang Zhao","doi":"10.1186/s42492-024-00158-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes an image-based three-dimensional (3D) vector reconstruction of industrial parts that can generate non-uniform rational B-splines (NURBS) surfaces with high fidelity and flexibility. The contributions of this study include three parts: first, a dataset of two-dimensional images is constructed for typical industrial parts, including hexagonal head bolts, cylindrical gears, shoulder rings, hexagonal nuts, and cylindrical roller bearings; second, a deep learning algorithm is developed for parameter extraction of 3D industrial parts, which can determine the final 3D parameters and pose information of the reconstructed model using two new nets, CAD-ClassNet and CAD-ReconNet; and finally, a 3D vector shape reconstruction of mechanical parts is presented to generate NURBS from the obtained shape parameters. The final reconstructed models show that the proposed approach is highly accurate, efficient, and practical.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-024-00158-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an image-based three-dimensional (3D) vector reconstruction of industrial parts that can generate non-uniform rational B-splines (NURBS) surfaces with high fidelity and flexibility. The contributions of this study include three parts: first, a dataset of two-dimensional images is constructed for typical industrial parts, including hexagonal head bolts, cylindrical gears, shoulder rings, hexagonal nuts, and cylindrical roller bearings; second, a deep learning algorithm is developed for parameter extraction of 3D industrial parts, which can determine the final 3D parameters and pose information of the reconstructed model using two new nets, CAD-ClassNet and CAD-ReconNet; and finally, a 3D vector shape reconstruction of mechanical parts is presented to generate NURBS from the obtained shape parameters. The final reconstructed models show that the proposed approach is highly accurate, efficient, and practical.