{"title":"Integrated bioinformatics analysis of ferroptosis-related gene signature in inflammation and immunity in intervertebral disc degeneration.","authors":"Wei Liu, Hui-Min Li, Guangchao Bai","doi":"10.1080/15257770.2024.2332403","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis has recently been shown to play a significant role in the progression of intervertebral disk degeneration (IDD), although the underlying mechanism is still unknown. The objective of this work was to use stringent bioinformatic techniques to clarify the crucial roles played by genes associated with ferroptosis in the emergence of IDD. For additional study, the microarray data pertinent to the IDD were acquired from the Gene Expression Omnibus database. The ferroptosis-related and IDD-related genes (FIDDRGs) were identified using a variety of bioinformatic techniques, which were also used to carry out function enrichment analysis, protein-protein correlation analysis, build the correlation regulatory network, and examine the potential connections between ferroptosis and immune abnormalities and inflammatory responses in IDD. A total of 16 FIDDRGs were eliminated for the further function enrichment analysis, and 10 hub FIDDRGs were chosen to build the correlation regulatory network. Hub FIDDRGs were shown to be highly associated with M2 macrophages and hub inflammatory response-related genes in IDD. When seen as a whole, our findings can give fresh perspectives on the mechanistic studies of ferroptosis in the emergence of IDD and new prospective targets for the therapeutic approaches.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"238-258"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2332403","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis has recently been shown to play a significant role in the progression of intervertebral disk degeneration (IDD), although the underlying mechanism is still unknown. The objective of this work was to use stringent bioinformatic techniques to clarify the crucial roles played by genes associated with ferroptosis in the emergence of IDD. For additional study, the microarray data pertinent to the IDD were acquired from the Gene Expression Omnibus database. The ferroptosis-related and IDD-related genes (FIDDRGs) were identified using a variety of bioinformatic techniques, which were also used to carry out function enrichment analysis, protein-protein correlation analysis, build the correlation regulatory network, and examine the potential connections between ferroptosis and immune abnormalities and inflammatory responses in IDD. A total of 16 FIDDRGs were eliminated for the further function enrichment analysis, and 10 hub FIDDRGs were chosen to build the correlation regulatory network. Hub FIDDRGs were shown to be highly associated with M2 macrophages and hub inflammatory response-related genes in IDD. When seen as a whole, our findings can give fresh perspectives on the mechanistic studies of ferroptosis in the emergence of IDD and new prospective targets for the therapeutic approaches.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.