Establishment of a Novel Miniature Double-Lumen Catheter Single-Cannulation Venovenous Extracorporeal Membrane Oxygenation Model in the Rat.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Yutaka Fujii, Takuya Abe
{"title":"Establishment of a Novel Miniature Double-Lumen Catheter Single-Cannulation Venovenous Extracorporeal Membrane Oxygenation Model in the Rat.","authors":"Yutaka Fujii, Takuya Abe","doi":"10.3390/membranes14030055","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, venovenous extracorporeal membrane oxygenation (VV ECMO) has been used to support patients with severe lung disease. Active use of VV ECMO was also recommended for severe respiratory failure due to COVID-19. However, VV ECMO is also known to cause various complications due to extracorporeal circulation. Although we conducted ECMO research using rats, we have not been able to establish whether double-lumen single-cannulation VV ECMO models in rats have been described previously. The purpose of this study was to establish a simple, stable, and maintainable miniature double-lumen single-canulation VV ECMO model in rats. A double-lumen catheter used as a plain central venous catheter (SMAC plus Seldinger type; Covidien Japan Co., Tokyo, Japan) was passed through the right external jugular vein and advanced into the right atrium as a conduit for venous uptake. The VV ECMO system comprised a roller pump, miniature membrane oxygenator, and polyvinyl chloride tubing line. During VV ECMO, blood pressure and hemodilution rate were maintained at around 80 mmHg and 30%, respectively. Hemoglobin was kept at >9 g/dL, no serious hemolysis was observed, and VV ECMO was maintained without blood transfusion. Oxygenation and removal of carbon dioxide from the blood were confirmed and pH was adequately maintained. This miniature VV ECMO model appears very useful for studying the mechanisms of biological reactions during VV ECMO.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10971828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14030055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, venovenous extracorporeal membrane oxygenation (VV ECMO) has been used to support patients with severe lung disease. Active use of VV ECMO was also recommended for severe respiratory failure due to COVID-19. However, VV ECMO is also known to cause various complications due to extracorporeal circulation. Although we conducted ECMO research using rats, we have not been able to establish whether double-lumen single-cannulation VV ECMO models in rats have been described previously. The purpose of this study was to establish a simple, stable, and maintainable miniature double-lumen single-canulation VV ECMO model in rats. A double-lumen catheter used as a plain central venous catheter (SMAC plus Seldinger type; Covidien Japan Co., Tokyo, Japan) was passed through the right external jugular vein and advanced into the right atrium as a conduit for venous uptake. The VV ECMO system comprised a roller pump, miniature membrane oxygenator, and polyvinyl chloride tubing line. During VV ECMO, blood pressure and hemodilution rate were maintained at around 80 mmHg and 30%, respectively. Hemoglobin was kept at >9 g/dL, no serious hemolysis was observed, and VV ECMO was maintained without blood transfusion. Oxygenation and removal of carbon dioxide from the blood were confirmed and pH was adequately maintained. This miniature VV ECMO model appears very useful for studying the mechanisms of biological reactions during VV ECMO.

在大鼠体内建立新型微型双腔导管单腔静脉体外膜氧合模型
近年来,静脉体外膜氧合(VV ECMO)已被用于支持严重肺病患者。对于 COVID-19 导致的严重呼吸衰竭,也建议积极使用 VV ECMO。然而,众所周知,VV ECMO 也会因体外循环而引起各种并发症。虽然我们使用大鼠进行了 ECMO 研究,但我们尚未能确定以前是否描述过大鼠双腔单通道 VV ECMO 模型。本研究的目的是在大鼠体内建立一个简单、稳定、可维持的微型双腔单套管 VV ECMO 模型。一根用作普通中心静脉导管的双腔导管(SMAC plus Seldinger 型;Covidien Japan Co.VV ECMO 系统由滚轴泵、微型膜氧合器和聚氯乙烯管路组成。在 VV ECMO 期间,血压和血液稀释率分别保持在 80 mmHg 和 30% 左右。血红蛋白保持在大于 9 g/dL 的水平,没有观察到严重的溶血现象,VV ECMO 无需输血即可维持。充氧和清除血液中的二氧化碳得到了证实,pH 值也得到了充分维持。这种微型 VV ECMO 模型似乎对研究 VV ECMO 期间的生物反应机制非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信