{"title":"DeepLabCut-based daily behavioural and posture analysis in a cricket.","authors":"Shota Hayakawa, Kosuke Kataoka, Masanobu Yamamoto, Toru Asahi, Takeshi Suzuki","doi":"10.1242/bio.060237","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms are indispensable intrinsic programs that regulate the daily rhythmicity of physiological processes, such as feeding and sleep. The cricket has been employed as a model organism for understanding the neural mechanisms underlying circadian rhythms in insects. However, previous studies measuring rhythm-controlled behaviours only analysed locomotive activity using seesaw-type and infrared sensor-based actometers. Meanwhile, advances in deep learning techniques have made it possible to analyse animal behaviour and posture using software that is devoid of human bias and does not require physical tagging of individual animals. Here, we present a system that can simultaneously quantify multiple behaviours in individual crickets - such as locomotor activity, feeding, and sleep-like states - in the long-term, using DeepLabCut, a supervised machine learning-based software for body keypoints labelling. Our system successfully labelled the six body parts of a single cricket with a high level of confidence and produced reliable data showing the diurnal rhythms of multiple behaviours. Our system also enabled the estimation of sleep-like states by focusing on posture, instead of immobility time, which is a conventional parameter. We anticipate that this system will provide an opportunity for simultaneous and automatic prediction of cricket behaviour and posture, facilitating the study of circadian rhythms.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11070783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian rhythms are indispensable intrinsic programs that regulate the daily rhythmicity of physiological processes, such as feeding and sleep. The cricket has been employed as a model organism for understanding the neural mechanisms underlying circadian rhythms in insects. However, previous studies measuring rhythm-controlled behaviours only analysed locomotive activity using seesaw-type and infrared sensor-based actometers. Meanwhile, advances in deep learning techniques have made it possible to analyse animal behaviour and posture using software that is devoid of human bias and does not require physical tagging of individual animals. Here, we present a system that can simultaneously quantify multiple behaviours in individual crickets - such as locomotor activity, feeding, and sleep-like states - in the long-term, using DeepLabCut, a supervised machine learning-based software for body keypoints labelling. Our system successfully labelled the six body parts of a single cricket with a high level of confidence and produced reliable data showing the diurnal rhythms of multiple behaviours. Our system also enabled the estimation of sleep-like states by focusing on posture, instead of immobility time, which is a conventional parameter. We anticipate that this system will provide an opportunity for simultaneous and automatic prediction of cricket behaviour and posture, facilitating the study of circadian rhythms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.