Bram Vancraeynest , Hoang-Son Pham , Amr Ali-Eldin
{"title":"A new approach to computing the distances between research disciplines based on researcher collaborations and similarity measurement techniques","authors":"Bram Vancraeynest , Hoang-Son Pham , Amr Ali-Eldin","doi":"10.1016/j.joi.2024.101527","DOIUrl":null,"url":null,"abstract":"<div><p>The measurement of distance between research disciplines involves various approaches, with a focus on publication citation analysis. However, calculating discipline distance requires more than just selecting relevant information; it also involves choosing suitable quantification methods and similarity measures. In this paper, we introduce a novel approach to measuring the distance between research disciplines, referred to as a distance matrix. This approach is particularly useful when there is limited availability of citation data, providing an alternative method for quantifying the distance between disciplines. Our method counts co-occurrences of disciplines based on researcher collaborations in projects and evaluates various similarity measures to convert the co-occurrence matrix into a similarity matrix. We analyze the behavior of different similarity measures and propose functions to transform the similarity matrix into a distance matrix, capturing research discipline dissimilarity effectively. Additionally, we establish evaluation criteria for distance matrix quality. We implement our approach on the Flanders Research Information Space dataset, showing promising results. The distance matrix demonstrates satisfactory density scores, outperforming traditional approaches in skewness and deviation. The probability density functions of distances remain consistent over time, indicating stability. Furthermore, the distance matrix proves valuable for visualizing discipline profiles associated with the dataset, providing valuable insights.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 3","pages":"Article 101527"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000403","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of distance between research disciplines involves various approaches, with a focus on publication citation analysis. However, calculating discipline distance requires more than just selecting relevant information; it also involves choosing suitable quantification methods and similarity measures. In this paper, we introduce a novel approach to measuring the distance between research disciplines, referred to as a distance matrix. This approach is particularly useful when there is limited availability of citation data, providing an alternative method for quantifying the distance between disciplines. Our method counts co-occurrences of disciplines based on researcher collaborations in projects and evaluates various similarity measures to convert the co-occurrence matrix into a similarity matrix. We analyze the behavior of different similarity measures and propose functions to transform the similarity matrix into a distance matrix, capturing research discipline dissimilarity effectively. Additionally, we establish evaluation criteria for distance matrix quality. We implement our approach on the Flanders Research Information Space dataset, showing promising results. The distance matrix demonstrates satisfactory density scores, outperforming traditional approaches in skewness and deviation. The probability density functions of distances remain consistent over time, indicating stability. Furthermore, the distance matrix proves valuable for visualizing discipline profiles associated with the dataset, providing valuable insights.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.