On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space

IF 0.5 4区 经济学 Q4 ECONOMICS
Sebastián Cea-Echenique , Matías Fuentes
{"title":"On the continuity of the Walras correspondence in distributional economies with an infinite-dimensional commodity space","authors":"Sebastián Cea-Echenique ,&nbsp;Matías Fuentes","doi":"10.1016/j.mathsocsci.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Distributional economies are defined by a probability distribution in the space of characteristics where the commodity space is an ordered separable Banach space. We characterize the continuity of the equilibrium correspondence and an associated stability concept which allows us to give a positive answer to an open question about the continuity of the Walras correspondence in infinite-dimensional spaces. As a byproduct, we study a stability concept where differentiability assumptions are not required, as is usual in the literature on regularity. Moreover, since distributional economies do not specify a space of agents, our setting encompasses several results in the literature on large economies.</p></div>","PeriodicalId":51118,"journal":{"name":"Mathematical Social Sciences","volume":"129 ","pages":"Pages 61-69"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Social Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165489624000362","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Distributional economies are defined by a probability distribution in the space of characteristics where the commodity space is an ordered separable Banach space. We characterize the continuity of the equilibrium correspondence and an associated stability concept which allows us to give a positive answer to an open question about the continuity of the Walras correspondence in infinite-dimensional spaces. As a byproduct, we study a stability concept where differentiability assumptions are not required, as is usual in the literature on regularity. Moreover, since distributional economies do not specify a space of agents, our setting encompasses several results in the literature on large economies.

论无限维商品空间分配经济中瓦尔拉斯对应关系的连续性
分配经济是由特征空间中的概率分布定义的,其中商品空间是有序可分离的巴拿赫空间。我们描述了均衡对应关系的连续性和相关的稳定性概念,这使我们能够对无穷维空间中瓦尔拉斯对应关系的连续性这一未决问题给出肯定的答案。作为副产品,我们研究了一个稳定性概念,在这个概念中不需要可微分性假设,这在关于正则性的文献中是很常见的。此外,由于分配经济并不指定代理空间,我们的设定包含了大型经济文献中的若干结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Social Sciences
Mathematical Social Sciences 数学-数学跨学科应用
CiteScore
1.30
自引率
0.00%
发文量
55
审稿时长
59 days
期刊介绍: The international, interdisciplinary journal Mathematical Social Sciences publishes original research articles, survey papers, short notes and book reviews. The journal emphasizes the unity of mathematical modelling in economics, psychology, political sciences, sociology and other social sciences. Topics of particular interest include the fundamental aspects of choice, information, and preferences (decision science) and of interaction (game theory and economic theory), the measurement of utility, welfare and inequality, the formal theories of justice and implementation, voting rules, cooperative games, fair division, cost allocation, bargaining, matching, social networks, and evolutionary and other dynamics models. Papers published by the journal are mathematically rigorous but no bounds, from above or from below, limits their technical level. All mathematical techniques may be used. The articles should be self-contained and readable by social scientists trained in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信