Dual-Path Graph Neural Network with Adaptive Auxiliary Module for Link Prediction.

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Big Data Pub Date : 2024-03-25 DOI:10.1089/big.2023.0130
Zhenzhen Yang, Zelong Lin, Yongpeng Yang, Jiaqi Li
{"title":"Dual-Path Graph Neural Network with Adaptive Auxiliary Module for Link Prediction.","authors":"Zhenzhen Yang, Zelong Lin, Yongpeng Yang, Jiaqi Li","doi":"10.1089/big.2023.0130","DOIUrl":null,"url":null,"abstract":"<p><p>Link prediction, which has important applications in many fields, predicts the possibility of the link between two nodes in a graph. Link prediction based on Graph Neural Network (GNN) obtains node representation and graph structure through GNN, which has attracted a growing amount of attention recently. However, the existing GNN-based link prediction approaches possess some shortcomings. On the one hand, because a graph contains different types of nodes, it leads to a great challenge for aggregating information and learning node representation from its neighbor nodes. On the other hand, the attention mechanism has been an effect instrument for enhancing the link prediction performance. However, the traditional attention mechanism is always monotonic for query nodes, which limits its influence on link prediction. To address these two problems, a Dual-Path Graph Neural Network (DPGNN) for link prediction is proposed in this study. First, we propose a novel Local Random Features Augmentation for Graph Convolution Network as a baseline of one path. Meanwhile, Graph Attention Network version 2 based on dynamic attention mechanism is adopted as a baseline of the other path. And then, we capture more meaningful node representation and more accurate link features by concatenating the information of these two paths. In addition, we propose an adaptive auxiliary module for better balancing the weight of auxiliary tasks, which brings more benefit to link prediction. Finally, extensive experiments verify the effectiveness and superiority of our proposed DPGNN for link prediction.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0130","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Link prediction, which has important applications in many fields, predicts the possibility of the link between two nodes in a graph. Link prediction based on Graph Neural Network (GNN) obtains node representation and graph structure through GNN, which has attracted a growing amount of attention recently. However, the existing GNN-based link prediction approaches possess some shortcomings. On the one hand, because a graph contains different types of nodes, it leads to a great challenge for aggregating information and learning node representation from its neighbor nodes. On the other hand, the attention mechanism has been an effect instrument for enhancing the link prediction performance. However, the traditional attention mechanism is always monotonic for query nodes, which limits its influence on link prediction. To address these two problems, a Dual-Path Graph Neural Network (DPGNN) for link prediction is proposed in this study. First, we propose a novel Local Random Features Augmentation for Graph Convolution Network as a baseline of one path. Meanwhile, Graph Attention Network version 2 based on dynamic attention mechanism is adopted as a baseline of the other path. And then, we capture more meaningful node representation and more accurate link features by concatenating the information of these two paths. In addition, we propose an adaptive auxiliary module for better balancing the weight of auxiliary tasks, which brings more benefit to link prediction. Finally, extensive experiments verify the effectiveness and superiority of our proposed DPGNN for link prediction.

带自适应辅助模块的双路径图神经网络用于链路预测
链接预测是指预测图中两个节点之间链接的可能性,在许多领域都有重要应用。基于图神经网络(GNN)的链接预测通过 GNN 获得节点表示和图结构,最近引起了越来越多的关注。然而,现有的基于 GNN 的链接预测方法存在一些缺陷。一方面,由于图中包含不同类型的节点,这给从相邻节点汇总信息和学习节点表示带来了巨大挑战。另一方面,注意力机制一直是提高链接预测性能的有效工具。然而,传统的注意力机制对于查询节点总是单调的,这限制了它对链接预测的影响。针对这两个问题,本研究提出了一种用于链接预测的双路径图神经网络(DPGNN)。首先,我们提出了一种新颖的局部随机特征增强图卷积网络(Local Random Features Augmentation for Graph Convolution Network),作为单路径的基线。同时,我们采用基于动态注意力机制的图注意力网络版本 2 作为另一条路径的基准。然后,我们通过串联这两条路径的信息来捕捉更有意义的节点表示和更准确的链接特征。此外,我们还提出了自适应辅助模块,以更好地平衡辅助任务的权重,从而为链接预测带来更多益处。最后,大量实验验证了我们提出的 DPGNN 在链接预测方面的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信