{"title":"Application of sensory nerve quantitative tests to analyze the subtypes of motor disorders in Parkinson's disease.","authors":"Hongxue Tian, Yongsheng Yuan, Kezhong Zhang","doi":"10.1097/WNR.0000000000002016","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"361-365"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the sensory nerve function in people with different subtypes of Parkinson's disease (PD), which included the tremor-dominant (TD) group (n = 30), postural instability and gait disorder (PIGD) group (n = 33), and healthy-controls (HC) group (n = 33). Sural nerve's current perception threshold (CPT) and pain tolerance threshold (PTT) in both feet were measured at different frequencies. Results were evaluated using the mini-mental state examination (MMSE), Hoehn Yahr scale (H-Y) , and 3-meter timed-up-and-go-test (TUGT). The MMSE scores of the TD and HC groups were higher than those of the PIGD group (TD < HC). The 3-meter TUGT scores of the PIGD group were higher than theTD and HC groups (TD > HC). The PIGD patients experienced a significantly shorter disease duration and higher H-Y score than the TD patients ( P < 0.05). The values of 2 KHz CPT of left-side (CPTL), 2KHz CPT of right-side (CPTR), and 5 Hz CPTR in the PIGD group were significantly higher compared to the TD and HC groups ( P < 0.05, Bonferroni correction). Additionally, the values of 250 Hz CPTL, 5 Hz CPTL, 250 Hz CPTR, 2 kHz PTT of left-side (PTTL), 250 Hz PTTL, and 5 Hz PTTL in the PIGD group were significantly elevated relative to the TD group ( P < 0.05, Bonferroni correction). Distinctive current threshold perception and PTT of the sural nerve can be observed in patients with varying PD subtypes, and sensory nerve conduction threshold electrical diagnostic testing can detect these discrepancies in sensory nerve function.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.