Dechao Xu, Aiping Mao, Libao Chen, Le Wu, Yiyi Ma, Changlin Mei
{"title":"Comprehensive Analysis of PKD1 and PKD2 by Long-Read Sequencing in Autosomal Dominant Polycystic Kidney Disease.","authors":"Dechao Xu, Aiping Mao, Libao Chen, Le Wu, Yiyi Ma, Changlin Mei","doi":"10.1093/clinchem/hvae030","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content.</p><p><strong>Methods: </strong>A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed \"comprehensive analysis of ADPKD\" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification.</p><p><strong>Results: </strong>CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13.</p><p><strong>Conclusions: </strong>CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by heterogeneous variants in the PKD1 and PKD2 genes. Genetic analysis of PKD1 has been challenging due to homology with 6 PKD1 pseudogenes and high GC content.
Methods: A single-tube multiplex long-range-PCR and long-read sequencing-based assay termed "comprehensive analysis of ADPKD" (CAPKD) was developed and evaluated in 170 unrelated patients by comparing to control methods including next-generation sequencing (NGS) and multiplex ligation-dependent probe amplification.
Results: CAPKD achieved highly specific analysis of PKD1 with a residual noise ratio of 0.05% for the 6 pseudogenes combined. CAPKD identified PKD1 and PKD2 variants (ranging from variants of uncertain significance to pathogenic) in 160 out of the 170 patients, including 151 single-nucleotide variants (SNVs) and insertion-deletion variants (indels), 6 large deletions, and one large duplication. Compared to NGS, CAPKD additionally identified 2 PKD1 variants (c.78_96dup and c.10729_10732dup). Overall, CAPKD increased the rate of variant detection from 92.9% (158/170) to 94.1% (160/170), and the rate of diagnosis with pathogenic or likely pathogenic variants from 82.4% (140/170) to 83.5% (142/170). CAPKD also directly determined the cis-/trans-configurations in 11 samples with 2 or 3 SNVs/indels, and the breakpoints of 6 large deletions and one large duplication, including 2 breakpoints in the intron 21 AG-repeat of PKD1, which could only be correctly characterized by aligning to T2T-CHM13.
Conclusions: CAPKD represents a comprehensive and specific assay toward full characterization of PKD1 and PKD2 variants, and improves the genetic diagnosis for ADPKD.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.