Water-soluble phenolics from Phoenix dactylifera fruits as potential reno-protective agent against cisplatin-induced toxicity: pre- and post-treatment strategies.
Omowumi Oyeronke Adewale, Roseline Fadera Oyelola, Oluwatosin Adefunke Adetuyi, Oluwaseun Abraham Adebisi, Damilare Adedayo Adekomi, Johnson Olaleye Oladele
{"title":"Water-soluble phenolics from <i>Phoenix dactylifera</i> fruits as potential reno-protective agent against cisplatin-induced toxicity: pre- and post-treatment strategies.","authors":"Omowumi Oyeronke Adewale, Roseline Fadera Oyelola, Oluwatosin Adefunke Adetuyi, Oluwaseun Abraham Adebisi, Damilare Adedayo Adekomi, Johnson Olaleye Oladele","doi":"10.1080/01480545.2024.2329762","DOIUrl":null,"url":null,"abstract":"<p><p>Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from <i>Phoenix dactylifera</i> (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (<i>p</i> < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1058-1071"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2329762","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from Phoenix dactylifera (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (p < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.