{"title":"Making Human Hematopoietic Stem Cells Without Transgenes.","authors":"Luis G Palma, Anna Bigas","doi":"10.1089/cell.2024.0020","DOIUrl":null,"url":null,"abstract":"<p><p>Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in <i>Cell Stem Cell</i>, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":" ","pages":"43-45"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Creating hematopoietic stem cells (HSCs) capable of multilineage engraft while possessing the ability to self-renew stands as a pivotal achievement within the field of regenerative medicine. However, achieving the generation of these cells without transgene expression or teratoma formation has not been fully accomplished. In a recent publication featured in Cell Stem Cell, Piau et al. document the production of functional HSCs derived from human-induced pluripotent stem cells (hiPSCs). They achieved this through a one-step differentiation protocol that notably does not require any transgene expression. hiPSCs-derived HSCs can engraft and self-renew upon serial transplantation and they are able to reconstitute lymphoid, myeloid, and erythroid compartments. This study presents a promising system to further study human HSC ontogeny, and it might represent a crucial step to obtain HSCs.
期刊介绍:
Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research.
Cellular Reprogramming coverage includes:
Somatic cell nuclear transfer and reprogramming in early embryos
Embryonic stem cells
Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos)
Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies
Epigenetics
Adult stem cells and pluripotency.