A Kriging-based method for the efficient computation of debris impact zones

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nicolas Praly , Vanessa Henriques , Maximilien Hochart , Massimiliano Costantini
{"title":"A Kriging-based method for the efficient computation of debris impact zones","authors":"Nicolas Praly ,&nbsp;Vanessa Henriques ,&nbsp;Maximilien Hochart ,&nbsp;Massimiliano Costantini","doi":"10.1016/j.jsse.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>To prevent or assess launch risk, evaluation of launchers impact zones is a key element. Several methods are currently used to predict impact zones at the French space agency (CNES), but the highest-fidelity method uses a series of computationally costly Monte Carlo simulations. This process can be very time consuming and the computation time can become prohibitive. A machine learning method called Kriging or Gaussian Process Regression is studied as a potential avenue to speed up the impact zones evaluation. This Kriging-based method, is tested in this paper in different flight phases and its potential for estimating debris impact zones is evaluated in terms of processing time, accuracy and genericity.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246889672400034X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To prevent or assess launch risk, evaluation of launchers impact zones is a key element. Several methods are currently used to predict impact zones at the French space agency (CNES), but the highest-fidelity method uses a series of computationally costly Monte Carlo simulations. This process can be very time consuming and the computation time can become prohibitive. A machine learning method called Kriging or Gaussian Process Regression is studied as a potential avenue to speed up the impact zones evaluation. This Kriging-based method, is tested in this paper in different flight phases and its potential for estimating debris impact zones is evaluated in terms of processing time, accuracy and genericity.

基于克里金法的碎片撞击区高效计算方法
为了预防或评估发射风险,对发射装置的撞击区进行评估是一个关键因素。法国国家空间研究中心(CNES)目前使用多种方法预测撞击区,但保真度最高的方法是使用一系列计算成本高昂的蒙特卡罗模拟。这一过程非常耗时,计算时间可能会变得令人望而却步。目前正在研究一种名为克里金法或高斯过程回归法的机器学习方法,作为加快影响区评估的潜在途径。本文在不同的飞行阶段测试了这种基于克里金法的方法,并从处理时间、准确性和通用性方面评估了该方法在估计碎片撞击区方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信