Pan Zhang , Qingxia Gou , Shiling Zhang , Xinyue Mei , Xu Zhao , Guoliang Li , Yapeng Fang , Mouming Zhao , Katsuyoshi Nishinari , Xiaolin Yao
{"title":"Engineering heterogeneous hierarchical hydrogels based on Artemisia sphaerocephala Krasch polysaccharide/whey protein isolate fibrils aqueous two-phase emulsion","authors":"Pan Zhang , Qingxia Gou , Shiling Zhang , Xinyue Mei , Xu Zhao , Guoliang Li , Yapeng Fang , Mouming Zhao , Katsuyoshi Nishinari , Xiaolin Yao","doi":"10.1016/j.foodhyd.2024.110034","DOIUrl":null,"url":null,"abstract":"<div><p>Emulsion-templating techniques have been used to develop structurally anisotropic hydrogels. This paper proposes a method to couple biopolymer assembly behavior with a phase-separated aqueous two-phase system (ATPS) to construct a hierarchical structure on protein-polysaccharide hydrogels. Based on the phase separation of <em>Artemisia sphaerocephala</em> Krasch polysaccharide (ASKP) and whey protein isolate (WPI) fibrils, a bi-continuous hydrogel was fabricated through spontaneous iron-facilitated molecular chelation. The impact of WPI fibrils under ultrasonic treatment for varying durations on gel structurization and physicochemical properties was also exploited. Shorter length of WPI fibrils facilitated stepwise cross-linking gelation during the oxidation of ferrous ions to ferric ions. Specifically, ultrasonic treatment for 6 min and 8 min promoted the accumulation of shorter fibrils, resulting in the formation of a more intensive clockwise-oriented hierarchical network. Compared to the hydrogels with longer linear aggregates without the ultrasonic treatment, the incorporation of the shorter aggregates resulting from ultrasonic treatment for 6 min and 8 min significantly increased the gel's water holding capacity and mechanical properties. Additionally, the fibrils that underwent ultrasonic treatment for 6 min resulted in a more stable three-dimensional network with optimal elastic performance. This study presents a new water-in-water emulsion-templated strategy for structural regulation and stabilization of multiform hydrogel.</p></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"153 ","pages":"Article 110034"},"PeriodicalIF":11.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24003084","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Emulsion-templating techniques have been used to develop structurally anisotropic hydrogels. This paper proposes a method to couple biopolymer assembly behavior with a phase-separated aqueous two-phase system (ATPS) to construct a hierarchical structure on protein-polysaccharide hydrogels. Based on the phase separation of Artemisia sphaerocephala Krasch polysaccharide (ASKP) and whey protein isolate (WPI) fibrils, a bi-continuous hydrogel was fabricated through spontaneous iron-facilitated molecular chelation. The impact of WPI fibrils under ultrasonic treatment for varying durations on gel structurization and physicochemical properties was also exploited. Shorter length of WPI fibrils facilitated stepwise cross-linking gelation during the oxidation of ferrous ions to ferric ions. Specifically, ultrasonic treatment for 6 min and 8 min promoted the accumulation of shorter fibrils, resulting in the formation of a more intensive clockwise-oriented hierarchical network. Compared to the hydrogels with longer linear aggregates without the ultrasonic treatment, the incorporation of the shorter aggregates resulting from ultrasonic treatment for 6 min and 8 min significantly increased the gel's water holding capacity and mechanical properties. Additionally, the fibrils that underwent ultrasonic treatment for 6 min resulted in a more stable three-dimensional network with optimal elastic performance. This study presents a new water-in-water emulsion-templated strategy for structural regulation and stabilization of multiform hydrogel.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.