Combining traditional and quantitative multiscale structural analysis to reconstruct the tectono-metamorphic evolution of migmatitic basements: the case of the Valpelline Series, Dent-Blanche Tectonic System, Western Alps
F. Caso , C.B. Piloni , M. Filippi , A. Pezzotta , E. Fazio , R. Visalli , G. Ortolano , M. Roda , M. Zucali
{"title":"Combining traditional and quantitative multiscale structural analysis to reconstruct the tectono-metamorphic evolution of migmatitic basements: the case of the Valpelline Series, Dent-Blanche Tectonic System, Western Alps","authors":"F. Caso , C.B. Piloni , M. Filippi , A. Pezzotta , E. Fazio , R. Visalli , G. Ortolano , M. Roda , M. Zucali","doi":"10.1016/j.jsg.2024.105099","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the ongoing development of new technologies, many instruments are available to assist geological investigations at different scales. These techniques, including 3D outcrop modelling from aerial photogrammetry and quantitative microstructural analysis are useful in crystalline basements studies. This contribution combines traditional and quantitative multiscale structural analysis techniques to the migmatitic rocks of the Valpelline Series (Dent-Blanche Tectonic System, Western Alps). Conventional structural analysis is integrated with the extraction of structural data from 3D models of representative smooth outcrops. Quantitative microstructural and mineral-chemical analyses are combined to link structural and metamorphic evolution. This approach allows identifying and correlating foliations that developed during three tectono-metamorphic stages. The first (D<sub>1</sub>) includes solid-state deformation associated with an early foliation (S<sub>1</sub>) preserved within metabasite boudins enclosed in migmatite gneiss. The second (D<sub>2</sub>) is related to the dominant foliation in migmatite gneiss (S<sub>2</sub>), coeval with the regional scale anatexis and growth of garnet and cordierite. The third (D<sub>3</sub>) is related to the late folding of S<sub>2</sub> and the development of a sillimanite-rich axial plane foliation (S<sub>3</sub>) which wraps around garnet and cordierite. Finally, this work discusses pros and cons of each innovative methodology, still emphasising the importance of using manually acquired field data as ground control.</p></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0191814124000518/pdfft?md5=1e7f47d2d5f672fb1075902d16fb4b5d&pid=1-s2.0-S0191814124000518-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124000518","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the ongoing development of new technologies, many instruments are available to assist geological investigations at different scales. These techniques, including 3D outcrop modelling from aerial photogrammetry and quantitative microstructural analysis are useful in crystalline basements studies. This contribution combines traditional and quantitative multiscale structural analysis techniques to the migmatitic rocks of the Valpelline Series (Dent-Blanche Tectonic System, Western Alps). Conventional structural analysis is integrated with the extraction of structural data from 3D models of representative smooth outcrops. Quantitative microstructural and mineral-chemical analyses are combined to link structural and metamorphic evolution. This approach allows identifying and correlating foliations that developed during three tectono-metamorphic stages. The first (D1) includes solid-state deformation associated with an early foliation (S1) preserved within metabasite boudins enclosed in migmatite gneiss. The second (D2) is related to the dominant foliation in migmatite gneiss (S2), coeval with the regional scale anatexis and growth of garnet and cordierite. The third (D3) is related to the late folding of S2 and the development of a sillimanite-rich axial plane foliation (S3) which wraps around garnet and cordierite. Finally, this work discusses pros and cons of each innovative methodology, still emphasising the importance of using manually acquired field data as ground control.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.