Mustafa Khan , Suxia Yan , Mujahid Ali , Faisal Mahmood , Yang Zheng , Xiaohui Song , Guochun Li , Junfeng Liu , Yong Wang
{"title":"From longan peel waste to energy storage: Porous activated carbon as a cathode matrix for advanced Li/Na-selenium batteries","authors":"Mustafa Khan , Suxia Yan , Mujahid Ali , Faisal Mahmood , Yang Zheng , Xiaohui Song , Guochun Li , Junfeng Liu , Yong Wang","doi":"10.1016/j.pnsc.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the potential of Longan peel waste (LPw) as a sustainable and cost-effective matrix for selenium-based cathodes in Li-Se and Na-Se batteries. Following activation, we created LP<sub>2</sub>—a designation for the carbon precursor derived from LPw, activated at a 1:2 ratio of carbonized LPw to KOH. This nomenclature, where ‘LP' stands for ‘Longan peel' and ‘2′ reflects the optimization of this ratio, led to a hierarchical porous structure with an average pore size of 3.0307 nm and a significant BET surface area of 111.9386 m<sup>2</sup> g<sup>-1</sup>. Selenium was incorporated into the LP<sub>2</sub> matrix using a simple melt diffusion technique, yielding the composite Se@LP<sub>2</sub>. In Li-Se batteries, Se@LP<sub>2</sub> exhibited an initial discharge capacity of 1033.75 mAh g⁻<sup>1</sup> at 0.1C. At a 1C rate, the composite demonstrated a capacity retention of 301.14 mAh g⁻<sup>1</sup> after 550 cycles and 380.91 mAh g⁻<sup>1</sup> after 100 cycles. Moreover, for Na-Se batteries, the composite showcased a capacity retention of 347.18 mAh g⁻<sup>1</sup> after 100 cycles at 0.1C. These findings underscore LP<sub>2</sub>'s potential as a viable and efficient matrix for selenium-based cathodes, revealing promising prospects for the advancement of highly efficient Li-Se and Na-Se batteries.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 2","pages":"Pages 329-337"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100200712400073X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the potential of Longan peel waste (LPw) as a sustainable and cost-effective matrix for selenium-based cathodes in Li-Se and Na-Se batteries. Following activation, we created LP2—a designation for the carbon precursor derived from LPw, activated at a 1:2 ratio of carbonized LPw to KOH. This nomenclature, where ‘LP' stands for ‘Longan peel' and ‘2′ reflects the optimization of this ratio, led to a hierarchical porous structure with an average pore size of 3.0307 nm and a significant BET surface area of 111.9386 m2 g-1. Selenium was incorporated into the LP2 matrix using a simple melt diffusion technique, yielding the composite Se@LP2. In Li-Se batteries, Se@LP2 exhibited an initial discharge capacity of 1033.75 mAh g⁻1 at 0.1C. At a 1C rate, the composite demonstrated a capacity retention of 301.14 mAh g⁻1 after 550 cycles and 380.91 mAh g⁻1 after 100 cycles. Moreover, for Na-Se batteries, the composite showcased a capacity retention of 347.18 mAh g⁻1 after 100 cycles at 0.1C. These findings underscore LP2's potential as a viable and efficient matrix for selenium-based cathodes, revealing promising prospects for the advancement of highly efficient Li-Se and Na-Se batteries.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.