Mustan Barış Sivri , Shahram Taheri , Rukiye Gözde Kırzıoğlu Ercan , Ünsun Yağcı , Zahra Golrizkhatami
{"title":"Dental age estimation: A comparative study of convolutional neural network and Demirjian's method","authors":"Mustan Barış Sivri , Shahram Taheri , Rukiye Gözde Kırzıoğlu Ercan , Ünsun Yağcı , Zahra Golrizkhatami","doi":"10.1016/j.jflm.2024.102679","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this study is to compare a technique using Convolutional Neural Network (CNN) with the Demirjian's method for chronological age estimation of living individuals based on tooth age from panoramic radiographs. This research used 5898 panoramic X-ray images collected for diagnostic from pediatric patients aged 4–17 who sought treatment at Antalya Oral and Dental Health Hospital between 2015 and 2020. The Demirjian's method's grading was executed by researchers who possessed appropriate training and experience. In the CNN method, various CNN architectures including Alexnet, VGG16, ResNet152, DenseNet201, InceptionV3, Xception, NASNetLarge, InceptionResNetV2, and MobieNetV2 have been evaluated. Densenet201 exhibited the lowest MAE value of 0.73 years, emphasizing its superior accuracy in age estimation compared to other architectures. In most age categories, the predicted age closely matches the actual age. The most inconsistent results are observed at ages 12 and 13. The results highlight correspondence between the age predicted by CNN and the Demirjian's approach. In conclusion, the results show that the CNN method is adequate to be an alternative to the Demirjian's age estimation method. We suggest that convolutional neural network can effectively optimize the accuracy of age estimation and can be faster than traditional methods, eliminating the need for additional learning from experts.</p></div>","PeriodicalId":16098,"journal":{"name":"Journal of forensic and legal medicine","volume":"103 ","pages":"Article 102679"},"PeriodicalIF":1.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic and legal medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1752928X24000416","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to compare a technique using Convolutional Neural Network (CNN) with the Demirjian's method for chronological age estimation of living individuals based on tooth age from panoramic radiographs. This research used 5898 panoramic X-ray images collected for diagnostic from pediatric patients aged 4–17 who sought treatment at Antalya Oral and Dental Health Hospital between 2015 and 2020. The Demirjian's method's grading was executed by researchers who possessed appropriate training and experience. In the CNN method, various CNN architectures including Alexnet, VGG16, ResNet152, DenseNet201, InceptionV3, Xception, NASNetLarge, InceptionResNetV2, and MobieNetV2 have been evaluated. Densenet201 exhibited the lowest MAE value of 0.73 years, emphasizing its superior accuracy in age estimation compared to other architectures. In most age categories, the predicted age closely matches the actual age. The most inconsistent results are observed at ages 12 and 13. The results highlight correspondence between the age predicted by CNN and the Demirjian's approach. In conclusion, the results show that the CNN method is adequate to be an alternative to the Demirjian's age estimation method. We suggest that convolutional neural network can effectively optimize the accuracy of age estimation and can be faster than traditional methods, eliminating the need for additional learning from experts.
期刊介绍:
The Journal of Forensic and Legal Medicine publishes topical articles on aspects of forensic and legal medicine. Specifically the Journal supports research that explores the medical principles of care and forensic assessment of individuals, whether adult or child, in contact with the judicial system. It is a fully peer-review hybrid journal with a broad international perspective.
The Journal accepts submissions of original research, review articles, and pertinent case studies, editorials, and commentaries in relevant areas of Forensic and Legal Medicine, Context of Practice, and Education and Training.
The Journal adheres to strict publication ethical guidelines, and actively supports a culture of inclusive and representative publication.