{"title":"Constraining seismic anisotropy on the mantle transition zone boundaries beneath the subducting Nazca slab","authors":"Zhu Zhang , Wen-Che Yu , Hsin-Hua Huang","doi":"10.1016/j.pepi.2024.107179","DOIUrl":null,"url":null,"abstract":"<div><p>Some seismic evidence suggests that the mantle transition zone (MTZ) may become highly hydrous and anisotropic, particularly in the vicinity of subduction zones. The two-dimensional path-integrated anisotropy from the upper mantle to the MTZ has been well established beneath the northwestern region of South America. However, explicit details of azimuthal anisotropy on the MTZ boundaries remains ambiguous. Therefore, we attempted to constrain the azimuthal anisotropy on the MTZ boundaries by implementing the P-to-S anisotropic receiver function analysis. We detected significant seismic evidence of azimuthal anisotropy on the 410-km discontinuity, but weak anisotropy on the 660-km discontinuity. The synthetic waveform modeling indicated the fast symmetry axis of anisotropy trends 50° from the north and plunges 40° downwards from horizontal with an anisotropy strength of 4.0% near 410 km depth. The direction of anisotropy suggests the mantle material moves downwards and towards the subducting Nazca slab near the depth of 410 km. The increased anisotropy strength around the 410 km suggests the hydrous wadsleyite may attribute to anisotropy in the upper MTZ. The lack of detectable seismic anisotropy near the depth of 660 km could be caused by the insufficient amount of aligned anisotropic minerals, even though the mantle material continues moving downwards.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"350 ","pages":"Article 107179"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000372","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Some seismic evidence suggests that the mantle transition zone (MTZ) may become highly hydrous and anisotropic, particularly in the vicinity of subduction zones. The two-dimensional path-integrated anisotropy from the upper mantle to the MTZ has been well established beneath the northwestern region of South America. However, explicit details of azimuthal anisotropy on the MTZ boundaries remains ambiguous. Therefore, we attempted to constrain the azimuthal anisotropy on the MTZ boundaries by implementing the P-to-S anisotropic receiver function analysis. We detected significant seismic evidence of azimuthal anisotropy on the 410-km discontinuity, but weak anisotropy on the 660-km discontinuity. The synthetic waveform modeling indicated the fast symmetry axis of anisotropy trends 50° from the north and plunges 40° downwards from horizontal with an anisotropy strength of 4.0% near 410 km depth. The direction of anisotropy suggests the mantle material moves downwards and towards the subducting Nazca slab near the depth of 410 km. The increased anisotropy strength around the 410 km suggests the hydrous wadsleyite may attribute to anisotropy in the upper MTZ. The lack of detectable seismic anisotropy near the depth of 660 km could be caused by the insufficient amount of aligned anisotropic minerals, even though the mantle material continues moving downwards.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.