Revealing the solid-state reaction process among multiphase multicomponent ceramic during ablation

Ziming Ye , Yi Zeng , Xiang Xiong , Sen Gao , Chen Shen , Shiyan Chen , Tianxing Jiang , Ge Yang
{"title":"Revealing the solid-state reaction process among multiphase multicomponent ceramic during ablation","authors":"Ziming Ye ,&nbsp;Yi Zeng ,&nbsp;Xiang Xiong ,&nbsp;Sen Gao ,&nbsp;Chen Shen ,&nbsp;Shiyan Chen ,&nbsp;Tianxing Jiang ,&nbsp;Ge Yang","doi":"10.1016/j.apmate.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic, while understanding the ablation mechanism is the foundation. Here, through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide, Nb-rich carbide, and Zr-rich silicide phases, we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation. It was found that this solid-state reaction occurred in the matrix/oxide scale interface region. In this process, metal cations are counter-diffused between the multicomponent phases, thereby resulting in their composition evolution, which allows the multicomponent phases to exist stably under a higher oxygen partial pressure, leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic. Additionally, this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000204/pdfft?md5=f83ea47616df40a39cc0f056db945f41&pid=1-s2.0-S2772834X24000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic, while understanding the ablation mechanism is the foundation. Here, through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide, Nb-rich carbide, and Zr-rich silicide phases, we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation. It was found that this solid-state reaction occurred in the matrix/oxide scale interface region. In this process, metal cations are counter-diffused between the multicomponent phases, thereby resulting in their composition evolution, which allows the multicomponent phases to exist stably under a higher oxygen partial pressure, leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic. Additionally, this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.

Abstract Image

揭示多相多组分陶瓷在烧蚀过程中的固态反应过程
多相设计是实现多组分超高温陶瓷优异抗烧蚀性能的一种可行方法,而了解烧蚀机理则是基础。在此,我们通过研究一种由富铪碳化物相、富铌碳化物相和富锆硅化物相组成的三相多组分陶瓷,报告了一种新发现的多相多组分陶瓷在烧蚀过程中的固态反应过程。研究发现,这种固态反应发生在基体/氧化物界面区域。在这一过程中,金属阳离子在多组分相之间反向扩散,从而导致其成分演变,这使得多组分相能够在更高的氧分压下稳定存在,从而提高了三相多组分陶瓷的热力学稳定性。此外,这种固态反应过程与氧化物鳞片之间的优先氧化行为在提高烧蚀性能方面具有协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信