Blue Laser Conduction Welding of Dissimilar Cu and Al Sheets

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zi-jue Tang, Huihui Yang, Le Wan, Pengyuan Ren, Xiaolin Zhang, Yi Wu, Haowei Wang, Hongze Wang
{"title":"Blue Laser Conduction Welding of Dissimilar Cu and Al Sheets","authors":"Zi-jue Tang, Huihui Yang, Le Wan, Pengyuan Ren, Xiaolin Zhang, Yi Wu, Haowei Wang, Hongze Wang","doi":"10.29391/2024.103.018","DOIUrl":null,"url":null,"abstract":"Joining Cu-Al with 0.6 mm is important for the high-power density battery in the new energy field. Low laser absorptivity is a challenge in Cu-Al welding with conventional infrared laser at around 1000 nm wavelength, where keyhole welding is necessary. It is difficult to control welding qualities in keyhole welding due to the intense flow and violently changing absorption rate. At 450 nm wavelength, Cu and Al have high laser absorptizzvity which has the potential to implement stable conduction welding. Therefore, this work adopted a blue laser welding system, and for the first time, realized the conduction welding of 0.6 mm Cu and 0.6 mm Al sheets. The welding process, surface appearance, mechanical properties, and electrical properties were investigated. The results showed that high-power (1950 W) could effectively realize stable Cu-Al conduction welding without spatters, and the welding speed could reach 40 mm/s. Compared with an infrared laser, the blue laser could weld Cu-Al using the form of Cu on top and Al on bottom, which was beneficial for a wide process window and stable welding process. A larger bead width and more consistent intermetallic compound thickness resulting from the blue laser were conducive to performance improvement. In addition, the relationship between welding parameters, molten pool characteristics, and process qualities was built. It provided a possibility to control the welding quality under the influence of strong heat accumulation and high thermal conductivity. This work demonstrated that blue laser has great potential in joining Cu-Al for new energy applications.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2024.103.018","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Joining Cu-Al with 0.6 mm is important for the high-power density battery in the new energy field. Low laser absorptivity is a challenge in Cu-Al welding with conventional infrared laser at around 1000 nm wavelength, where keyhole welding is necessary. It is difficult to control welding qualities in keyhole welding due to the intense flow and violently changing absorption rate. At 450 nm wavelength, Cu and Al have high laser absorptizzvity which has the potential to implement stable conduction welding. Therefore, this work adopted a blue laser welding system, and for the first time, realized the conduction welding of 0.6 mm Cu and 0.6 mm Al sheets. The welding process, surface appearance, mechanical properties, and electrical properties were investigated. The results showed that high-power (1950 W) could effectively realize stable Cu-Al conduction welding without spatters, and the welding speed could reach 40 mm/s. Compared with an infrared laser, the blue laser could weld Cu-Al using the form of Cu on top and Al on bottom, which was beneficial for a wide process window and stable welding process. A larger bead width and more consistent intermetallic compound thickness resulting from the blue laser were conducive to performance improvement. In addition, the relationship between welding parameters, molten pool characteristics, and process qualities was built. It provided a possibility to control the welding quality under the influence of strong heat accumulation and high thermal conductivity. This work demonstrated that blue laser has great potential in joining Cu-Al for new energy applications.
铜铝异种板材的蓝色激光传导焊接
0.6 毫米的铜铝焊接对于新能源领域的高功率密度电池非常重要。使用波长在 1000 nm 左右的传统红外激光焊接铜铝时,需要进行锁孔焊接,而激光吸收率低是一个难题。由于强烈的流动和剧烈变化的吸收率,很难控制锁孔焊接的焊接质量。在 450 nm 波长下,铜和铝对激光的吸收率较高,有可能实现稳定的传导焊接。因此,本研究采用蓝激光焊接系统,首次实现了 0.6 毫米铜板和 0.6 毫米铝板的传导焊接。研究了焊接过程、表面外观、机械性能和电性能。结果表明,高功率(1950 W)激光能有效实现稳定的铜铝传导焊接,且无飞溅,焊接速度可达 40 mm/s。与红外激光器相比,蓝色激光器可以采用上铜下铝的形式焊接铜铝,有利于获得宽广的工艺窗口和稳定的焊接工艺。蓝色激光器产生的焊缝宽度更大,金属间化合物厚度更稳定,有利于提高性能。此外,还建立了焊接参数、熔池特性和工艺质量之间的关系。这为在强蓄热和高导热性影响下控制焊接质量提供了可能。这项研究表明,蓝激光在新能源领域的铜铝焊接中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信