The influence of roadway characteristics and built environment on the extent of over-speeding: An exploration using mobile automated traffic camera data
{"title":"The influence of roadway characteristics and built environment on the extent of over-speeding: An exploration using mobile automated traffic camera data","authors":"Boniphace Kutela , Frank Ngeni , Cuthbert Ruseruka , Tumlumbe Juliana Chengula , Norris Novat , Hellen Shita , Abdallah Kinero","doi":"10.1016/j.ijtst.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Over-speeding is a pivotal factor in fatal traffic crashes globally, necessitating robust speed management strategies to augment road safety. In 2021, the National Highway Traffic Safety Administration reported over 12 000 speed-related fatalities in the United States alone. Previous studies aggregated over-speeding tendencies; however, the extent of over-speeding has a significant implication on the crash outcome. This study delves into the prevalence and magnitude of over-speeding in various scenarios, utilizing data from traffic cameras in Edmonton, Canada, and employing a negative binomial statistical model for analysis. The model elucidates the significance and likelihood of over-speeding tendencies by incorporating temporal and built environment variables, i.e., year, month, number of lanes, dwelling unit types, school-related, and open green space. Study results indicated that the aggregation of the over-speeding data tends to underestimate the influence of various factors. Notably, the estimated impact of the posted speed limit for the disaggregated models is up to over two times that for the aggregated model. Further, the summer months exhibit a roughly 25% uptick in speed limit violations for aggregated models while about a 40% uptick in the speed limit violations for disaggregated approaches. Conversely, a discernible decline in over-speeding tendencies is observed with camera enforcement, showcasing a 25% reduction over four years. Built environment variables presented mixed results, with one-unit dwellings associated with a 12% increase in over-speeding, while proximity to schools indicated a 10% decrease. These pivotal findings provide policymakers and practitioners with valuable insights to formulate targeted interventions and countermeasures to curtail speed limit violations and bolster overall road safety conditions.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"17 ","pages":"Pages 120-130"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Over-speeding is a pivotal factor in fatal traffic crashes globally, necessitating robust speed management strategies to augment road safety. In 2021, the National Highway Traffic Safety Administration reported over 12 000 speed-related fatalities in the United States alone. Previous studies aggregated over-speeding tendencies; however, the extent of over-speeding has a significant implication on the crash outcome. This study delves into the prevalence and magnitude of over-speeding in various scenarios, utilizing data from traffic cameras in Edmonton, Canada, and employing a negative binomial statistical model for analysis. The model elucidates the significance and likelihood of over-speeding tendencies by incorporating temporal and built environment variables, i.e., year, month, number of lanes, dwelling unit types, school-related, and open green space. Study results indicated that the aggregation of the over-speeding data tends to underestimate the influence of various factors. Notably, the estimated impact of the posted speed limit for the disaggregated models is up to over two times that for the aggregated model. Further, the summer months exhibit a roughly 25% uptick in speed limit violations for aggregated models while about a 40% uptick in the speed limit violations for disaggregated approaches. Conversely, a discernible decline in over-speeding tendencies is observed with camera enforcement, showcasing a 25% reduction over four years. Built environment variables presented mixed results, with one-unit dwellings associated with a 12% increase in over-speeding, while proximity to schools indicated a 10% decrease. These pivotal findings provide policymakers and practitioners with valuable insights to formulate targeted interventions and countermeasures to curtail speed limit violations and bolster overall road safety conditions.