Jing Luo , Guo-An Yin , Fu-Jun Niu , Tian-Chun Dong , Ze-Yong Gao , Ming-Hao Liu , Fan Yu
{"title":"Machine learning-based predictions of current and future susceptibility to retrogressive thaw slumps across the Northern Hemisphere","authors":"Jing Luo , Guo-An Yin , Fu-Jun Niu , Tian-Chun Dong , Ze-Yong Gao , Ming-Hao Liu , Fan Yu","doi":"10.1016/j.accre.2024.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>Retrogressive thaw slumps (RTSs) caused by the thawing of ground ice on permafrost slopes have dramatically increased and become a common permafrost hazard across the Northern Hemisphere during previous decades. However, a gap remains in our comprehensive understanding of the spatial controlling factors, including the climate and terrain, that are conducive to these RTSs at a global scale. Using machine learning methodologies, we mapped the current and future RTSs susceptibility distributions by incorporating a range of environmental factors and RTSs inventories. We identified freezing-degree days and maximum summer rainfall as the primary environmental factors affecting RTSs susceptibility. The final ensemble susceptibility map suggests that regions with high to very high susceptibility could constitute (11.6 <span><math><mrow><mo>±</mo></mrow></math></span> 0.78)% of the Northern Hemisphere's permafrost region. When juxtaposed with the current (2000–2020) RTSs susceptibility map, the total area with high to very high susceptibility could witness an increase ranging from (31.7 <span><math><mrow><mo>±</mo></mrow></math></span> 0.65)% (SSP585) to (51.9 <span><math><mrow><mo>±</mo></mrow></math></span> 0.73)% (SSP126) by the 2041–2060. The insights gleaned from this study not only offer valuable implications for engineering applications across the Northern Hemisphere, but also provide a long-term insight into the potential change of RTSs in permafrost regions in response to climate change.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 2","pages":"Pages 253-264"},"PeriodicalIF":6.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000303/pdfft?md5=8e8f760bc2acb4f3f9f1037649a722f4&pid=1-s2.0-S1674927824000303-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824000303","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Retrogressive thaw slumps (RTSs) caused by the thawing of ground ice on permafrost slopes have dramatically increased and become a common permafrost hazard across the Northern Hemisphere during previous decades. However, a gap remains in our comprehensive understanding of the spatial controlling factors, including the climate and terrain, that are conducive to these RTSs at a global scale. Using machine learning methodologies, we mapped the current and future RTSs susceptibility distributions by incorporating a range of environmental factors and RTSs inventories. We identified freezing-degree days and maximum summer rainfall as the primary environmental factors affecting RTSs susceptibility. The final ensemble susceptibility map suggests that regions with high to very high susceptibility could constitute (11.6 0.78)% of the Northern Hemisphere's permafrost region. When juxtaposed with the current (2000–2020) RTSs susceptibility map, the total area with high to very high susceptibility could witness an increase ranging from (31.7 0.65)% (SSP585) to (51.9 0.73)% (SSP126) by the 2041–2060. The insights gleaned from this study not only offer valuable implications for engineering applications across the Northern Hemisphere, but also provide a long-term insight into the potential change of RTSs in permafrost regions in response to climate change.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.