Xiao-yi Wang , Cheng-liang Dong , Kun Xu , Ri-long Xiao , Xiu-juan Feng
{"title":"Ciprofloxacin (CIP)-polluted water treatment via a facile mechanochemical route: Influencing factors and mechanism insights","authors":"Xiao-yi Wang , Cheng-liang Dong , Kun Xu , Ri-long Xiao , Xiu-juan Feng","doi":"10.1016/j.wse.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Degrading ciprofloxacin (CIP)-polluted water has recently emerged as an urgent environmental issue. This study introduced mechanochemical treatment (MCT) as an innovative and underexplored approach for the degradation of CIP in water. The influence of various additives (CaO, Fe<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, Al, and Fe) on CIP degradation efficiency was investigated. Additionally, six types of composite additives (Fe–CaO, Fe–Fe<sub>2</sub>O<sub>3</sub>, Fe–SiO<sub>2</sub>, Fe–Al, Al–SiO<sub>2</sub>, and Al–CaO) were explored, with the composite of 20% Fe and 80% SiO<sub>2</sub> exhibiting notable performance. The impacts of additive content, pH value, and co-existing ions on CIP degradation efficiency were investigated. Furthermore, the effectiveness of MCT in degrading other medical pollutants (norfloxacin, ofloxacin, and enrofloxacin) was verified. The transformations and changes in the crystal structure, oxidation state, microstructure, and morphology of the Fe–SiO<sub>2</sub> composite additive were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. This study proposed a sigmoid trend kinetic model (the Delogu model) that better elucidates the MCT process. Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature. This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.</div></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"18 1","pages":"Pages 21-29"},"PeriodicalIF":3.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237024000450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Degrading ciprofloxacin (CIP)-polluted water has recently emerged as an urgent environmental issue. This study introduced mechanochemical treatment (MCT) as an innovative and underexplored approach for the degradation of CIP in water. The influence of various additives (CaO, Fe2O3, SiO2, Al, and Fe) on CIP degradation efficiency was investigated. Additionally, six types of composite additives (Fe–CaO, Fe–Fe2O3, Fe–SiO2, Fe–Al, Al–SiO2, and Al–CaO) were explored, with the composite of 20% Fe and 80% SiO2 exhibiting notable performance. The impacts of additive content, pH value, and co-existing ions on CIP degradation efficiency were investigated. Furthermore, the effectiveness of MCT in degrading other medical pollutants (norfloxacin, ofloxacin, and enrofloxacin) was verified. The transformations and changes in the crystal structure, oxidation state, microstructure, and morphology of the Fe–SiO2 composite additive were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. This study proposed a sigmoid trend kinetic model (the Delogu model) that better elucidates the MCT process. Three plausible degradation pathways were discussed based on intermediate substance identification and pertinent literature. This study not only establishes a pathway for the facile degradation of CIP pollutants through MCT but also contributes to advancements in wastewater treatment methodologies.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.