Nanlin Guo , Sihui Chen , Jun Tao , Yang Liu , Jiayu Wan , Xin Li
{"title":"Semi-supervised learning for explainable few-shot battery lifetime prediction","authors":"Nanlin Guo , Sihui Chen , Jun Tao , Yang Liu , Jiayu Wan , Xin Li","doi":"10.1016/j.joule.2024.02.020","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate prediction of battery lifetime is critical for ensuring timely maintenance and safety of batteries. Although data-driven methods have made significant progress, their model accuracy is often hampered by a scarcity of labeled data. To address this challenge, we developed a semi-supervised learning technique named partial Bayesian co-training (PBCT), enhancing the modeling of battery lifetime prediction. Leveraging the low-cost unlabeled data, our model extracts hidden information to improve the understanding of the underlying data patterns and achieve higher lifetime prediction accuracy. PBCT outperforms existing approaches by up to 21.9% on lifetime prediction accuracy, with negligible overhead for data acquisition. Moreover, our research suggests that incorporating unlabeled data into the training process can help to uncover critical factors that impact battery lifetime, which may be overlooked with a limited number of labeled data alone. The proposed semi-supervised approach sheds light on the future direction for efficient and explainable data-driven battery status estimation.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 6","pages":"Pages 1820-1836"},"PeriodicalIF":35.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S254243512400103X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of battery lifetime is critical for ensuring timely maintenance and safety of batteries. Although data-driven methods have made significant progress, their model accuracy is often hampered by a scarcity of labeled data. To address this challenge, we developed a semi-supervised learning technique named partial Bayesian co-training (PBCT), enhancing the modeling of battery lifetime prediction. Leveraging the low-cost unlabeled data, our model extracts hidden information to improve the understanding of the underlying data patterns and achieve higher lifetime prediction accuracy. PBCT outperforms existing approaches by up to 21.9% on lifetime prediction accuracy, with negligible overhead for data acquisition. Moreover, our research suggests that incorporating unlabeled data into the training process can help to uncover critical factors that impact battery lifetime, which may be overlooked with a limited number of labeled data alone. The proposed semi-supervised approach sheds light on the future direction for efficient and explainable data-driven battery status estimation.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.