A zero-sum problem related to the max gap of the unit group of the residue class ring

Pub Date : 2024-03-20 DOI:10.1016/j.jnt.2024.02.005
Xiao Jiang, Wenkai Yang
{"title":"A zero-sum problem related to the max gap of the unit group of the residue class ring","authors":"Xiao Jiang,&nbsp;Wenkai Yang","doi":"10.1016/j.jnt.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>S</em> be a sequence over a finite abelian group <em>G</em> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> be the times that <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> occurs in <em>S</em>. A sequence <em>S</em> over <em>G</em> is called weak-regular if <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo><mo>≤</mo><mi>ord</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> for every <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span>. Denote by <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> the smallest integer <em>t</em> such that every weak-regular sequence <em>S</em> over <em>G</em> of length <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mi>t</mi></math></span> has a nonempty zero-sum subsequence <em>T</em> of <em>S</em> satisfying <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> for some <span><math><mi>g</mi><mo>|</mo><mi>S</mi></math></span>. <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has been formulated by Gao et al. very recently to study zero-sum problems in a unify way and determined only for cyclic groups of prime-power order and some other very special groups. As for general cyclic groups <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, they gave that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>3</mn><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn><mo>.</mo></math></span></span></span></p><p>In this paper, we first study the max gap of the unit group of the residue class ring and give an upper bound of it. Then we prove that there is always an integer <span><math><mi>a</mi><mo>∈</mo><mo>[</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>,</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup><mo>]</mo></math></span> such that <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>1</mn></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2227</mn></math></span>. Finally, we improve the result of Gao et al. by showing that<span><span><span><math><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>≤</mo><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mo>⌈</mo><mn>2</mn><msqrt><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span></span></span> for any cyclic group <span><math><mi>G</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, in which for each equality, there are infinitely many <em>n</em> making it hold. And a computing result prefigures that <span><math><mi>N</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> has not been determined only for very few cyclic groups <em>G</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a sequence over a finite abelian group G and vg(S) be the times that gG occurs in S. A sequence S over G is called weak-regular if vg(S)ord(g) for every gG. Denote by N(G) the smallest integer t such that every weak-regular sequence S over G of length |S|t has a nonempty zero-sum subsequence T of S satisfying vg(T)=vg(S) for some g|S. N(G) has been formulated by Gao et al. very recently to study zero-sum problems in a unify way and determined only for cyclic groups of prime-power order and some other very special groups. As for general cyclic groups G=Cn, they gave that2n3n+1N(G)2n2n+1+1.

In this paper, we first study the max gap of the unit group of the residue class ring and give an upper bound of it. Then we prove that there is always an integer a[n12,n12+n14] such that gcd(a,n)=1 for n2227. Finally, we improve the result of Gao et al. by showing that2n2n+1N(G)2n2n+1+1 for any cyclic group G=Cn with n3, in which for each equality, there are infinitely many n making it hold. And a computing result prefigures that N(G) has not been determined only for very few cyclic groups G.

分享
查看原文
与残差类环单位群最大间隙有关的零和问题
设 S 是有限无边群 G 上的序列,vg(S) 是 g∈G 在 S 中出现的次数。如果对每个 g∈G 来说,vg(S)≤ord(g),则 G 上的序列 S 称为弱规则序列。用 N(G) 表示最小整数 t,使得长度为 |S|≥t 的 G 上的每个弱规则序列 S 对于某个 g|S 都有一个满足 vg(T)=vg(S) 的 S 的非空零和子序列 T。N(G)是高晓松等人最近为了统一研究零和问题而提出的,它只适用于素数幂级数的循环群和其他一些非常特殊的群。对于一般的循环群 G=Cn,他们给出了2n-⌈3n⌉+1≤N(G)≤2n-⌈2n+1⌉+1。然后,我们证明在 n≥2227 时,总有一个整数 a∈[n12,n12+n14]使得 gcd(a,n)=1。最后,我们通过证明 2n-⌈2n+1⌉≤N(G)≤2n-⌈2n+1⌉+1 来改进 Gao 等人的结果,对于任何 n≥3 的循环群 G=Cn,其中每个等式都有无穷多个 n 使其成立。而一个计算结果预示,N(G)并不是只对极少数的循环群 G 才确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信