Insight into Sources of Benzene, TCE, and PFOA/PFOS in Groundwater at Naval Air Station Whiting Field, Florida, through Numerical Particle-Tracking Simulations
Eric D. Swain, J. Landmeyer, Michael A. Singletary, Shannon E. Provenzano
{"title":"Insight into Sources of Benzene, TCE, and PFOA/PFOS in Groundwater at Naval Air Station Whiting Field, Florida, through Numerical Particle-Tracking Simulations","authors":"Eric D. Swain, J. Landmeyer, Michael A. Singletary, Shannon E. Provenzano","doi":"10.3390/hydrology11030037","DOIUrl":null,"url":null,"abstract":"Past waste-disposal activities at Naval Air Station Whiting Field (NASWF) have led to elevated concentrations of contaminants in the underlying sand and gravel aquifer. Contaminants include two of the most commonly detected chemicals in groundwater in many countries (benzene and trichloroethylene (TCE)) and the “forever chemicals” per- and poly-fluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). A MODFLOW model (the Whiting Field Groundwater Model (WFGM)) was previously developed for NASWF and the surrounding area to simulate groundwater flow. To obtain insight into groundwater flow pathways for the identification of potential source areas, the MODPATH particle-tracking application was applied to the WFGM for three public supply wells and three monitoring wells at NASWF. The travel time to recharge areas was estimated using concentrations of the groundwater age-dating solutes tritium (as helium ingrowth) and chlorofluorocarbons detected in the monitoring wells. Simulated travel times agree with the groundwater ages and indicate that the calibrated WFGM reasonably represents groundwater flow velocities and pathways. The MODPATH simulations confirm suspected on-base source areas to explain chemical detection in the monitoring wells. In contrast, the particle-tracking simulations indicate that potential source areas to the public supply wells include both on- and off-base sources. This is important because PFAS chemicals can have multiple sources, including land application of sludge-based fertilizers. This approach that combines groundwater age dating with particle-tracking simulations can be applied at similar sites characterized by benzene-, TCE-, and PFAS-contaminated groundwater.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology11030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Past waste-disposal activities at Naval Air Station Whiting Field (NASWF) have led to elevated concentrations of contaminants in the underlying sand and gravel aquifer. Contaminants include two of the most commonly detected chemicals in groundwater in many countries (benzene and trichloroethylene (TCE)) and the “forever chemicals” per- and poly-fluoroalkyl substances (PFAS) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). A MODFLOW model (the Whiting Field Groundwater Model (WFGM)) was previously developed for NASWF and the surrounding area to simulate groundwater flow. To obtain insight into groundwater flow pathways for the identification of potential source areas, the MODPATH particle-tracking application was applied to the WFGM for three public supply wells and three monitoring wells at NASWF. The travel time to recharge areas was estimated using concentrations of the groundwater age-dating solutes tritium (as helium ingrowth) and chlorofluorocarbons detected in the monitoring wells. Simulated travel times agree with the groundwater ages and indicate that the calibrated WFGM reasonably represents groundwater flow velocities and pathways. The MODPATH simulations confirm suspected on-base source areas to explain chemical detection in the monitoring wells. In contrast, the particle-tracking simulations indicate that potential source areas to the public supply wells include both on- and off-base sources. This is important because PFAS chemicals can have multiple sources, including land application of sludge-based fertilizers. This approach that combines groundwater age dating with particle-tracking simulations can be applied at similar sites characterized by benzene-, TCE-, and PFAS-contaminated groundwater.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.