İHA TABANLI RAY KONTROLÜ İÇİN EVRİŞİMLİ SİNİR AĞLARI İLE RAY GÖRÜNTÜLERİNİN GERÇEK ZAMANLI SEGMENTASYONU

Selçuk Sinan Kirat, Ilhan Aydin
{"title":"İHA TABANLI RAY KONTROLÜ İÇİN EVRİŞİMLİ SİNİR AĞLARI İLE RAY GÖRÜNTÜLERİNİN GERÇEK ZAMANLI SEGMENTASYONU","authors":"Selçuk Sinan Kirat, Ilhan Aydin","doi":"10.17780/ksujes.1367644","DOIUrl":null,"url":null,"abstract":"Demiryolları insan ve yükünü taşır. Güvenli bir demiryolu seyahati için rayların kontrol edilmesi önemlidir. Raylar genelde insanlar tarafından manuel olarak kontrol edilmektedir. Gelişen teknolojiyle artık İHA'lar birçok görevde insanın yerini almaktadır. Rayların manuel olarak kontrol edilmesi zaman alıcı ve maliyetli bir iştir. Bu nedenle raylar İHA'lar tarafından kontrol edilebilir. İHA'ların rayları kontrol edebilmesi için rayların üzerinde otonom olarak uçması gerekir. Bunu yapabilmesi için ray görüntüleri üzerinde segmentasyon yapılmalıdır. Görüntü segmentasyonu bilgisayarlı görü alanında yapılan çalışmalardandır. Bu çalışmalarda derin öğrenmeden faydalanılmaktadır. Derin öğrenme tabanlı evrişimsel sinir ağlarından olan UNet, ICNet ve BiSeNet V2, bilgisayarlı görü uygulamalarında kullanılmaktadırlar. Literatürde gerçek zamanlı görüntü segmentasyonu görevlerinde kullanılan bu ağlar halka açık olarak paylaşılan Railsem19 veri seti özelleştirilerek eğitilmiştir. 1024×512 piksel çözünürlüğündeki görüntüler üzerinde %98 segmentasyon doğruluğuna ulaşan ağlar İHA ile demiryolundan alınan gerçek zamanlı görüntülerde yaklaşık 15 fps hıza ulaşmışlardır. Ağların gerçek zamanlı segmentasyon videosu https://youtu.be/piVTdsDPzfg bağlantısından izlenilebilir. Çalışmada ayrıca otonom İHA uçuşu bir PID uçuş kontrol sistemi önerilmiştir.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"75 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1367644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Demiryolları insan ve yükünü taşır. Güvenli bir demiryolu seyahati için rayların kontrol edilmesi önemlidir. Raylar genelde insanlar tarafından manuel olarak kontrol edilmektedir. Gelişen teknolojiyle artık İHA'lar birçok görevde insanın yerini almaktadır. Rayların manuel olarak kontrol edilmesi zaman alıcı ve maliyetli bir iştir. Bu nedenle raylar İHA'lar tarafından kontrol edilebilir. İHA'ların rayları kontrol edebilmesi için rayların üzerinde otonom olarak uçması gerekir. Bunu yapabilmesi için ray görüntüleri üzerinde segmentasyon yapılmalıdır. Görüntü segmentasyonu bilgisayarlı görü alanında yapılan çalışmalardandır. Bu çalışmalarda derin öğrenmeden faydalanılmaktadır. Derin öğrenme tabanlı evrişimsel sinir ağlarından olan UNet, ICNet ve BiSeNet V2, bilgisayarlı görü uygulamalarında kullanılmaktadırlar. Literatürde gerçek zamanlı görüntü segmentasyonu görevlerinde kullanılan bu ağlar halka açık olarak paylaşılan Railsem19 veri seti özelleştirilerek eğitilmiştir. 1024×512 piksel çözünürlüğündeki görüntüler üzerinde %98 segmentasyon doğruluğuna ulaşan ağlar İHA ile demiryolundan alınan gerçek zamanlı görüntülerde yaklaşık 15 fps hıza ulaşmışlardır. Ağların gerçek zamanlı segmentasyon videosu https://youtu.be/piVTdsDPzfg bağlantısından izlenilebilir. Çalışmada ayrıca otonom İHA uçuşu bir PID uçuş kontrol sistemi önerilmiştir.
利用卷积神经网络实时分割轨道图像,用于无人机轨道检测
铁路运输人员和货物。为了确保铁路旅行的安全,检查铁轨非常重要。铁轨通常由人工控制。随着技术的发展,无人机现在可以在许多任务中取代人工。人工检查钢轨既费时又费钱。因此,轨道可以由无人机控制。为了让无人机控制钢轨,它们需要在钢轨上空自主飞行。为此,需要对轨道图像进行分割。图像分割是计算机视觉领域的研究之一。这些研究利用了深度学习。UNet、ICNet 和 BiSeNet V2 是基于深度学习的卷积神经网络,可用于计算机视觉应用。这些网络通过定制公开共享的 Railsem19 数据集进行训练,在文献中被用于实时图像分割任务。这些网络在分辨率为 1024×512 像素的图像上达到了 98% 的分割准确率,在使用无人机从铁路拍摄的实时图像上达到了约 15 fps 的速度。网络的实时分割视频可在 https://youtu.be/piVTdsDPzfg 上观看。研究还提出了一种用于无人机自主飞行的 PID 飞行控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信