{"title":"Analyzing Colorectal Cancer at the Molecular Level through Next-generation Sequencing in Erbil City","authors":"Vyan A. Qadir, Kamaran K. Abdoulrahman","doi":"10.14500/aro.11495","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths globally. It is characterized as a genomic disorder marked by diverse genomic anomalies, including point mutations, genomic rearrangements, gene fusions, and alterations in chromosomal copy numbers. This research aims to identify previously undisclosed genetic variants associated with an increased risk of CRC by employing next-generation sequencing technology. Genomic DNA was extracted from blood specimens of five CRC patients. The sequencing data of the samples are utilized for variant identification. In addition, the Integrative Genomic Viewer software (IGV) is used to visualize the identified variants. Furthermore, various in silico tools, including Mutation Taster and Align GVGD, are used to predict the potential impact of mutations on structural features and protein function. Based on the findings of this research, 12 different genetic variations are detected among individuals with CRC. Inherited variations are located within the following genes: MSH6, MSH2, PTPRJ, PMS2, TP53, BRAF, APC, and PIK3CA.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths globally. It is characterized as a genomic disorder marked by diverse genomic anomalies, including point mutations, genomic rearrangements, gene fusions, and alterations in chromosomal copy numbers. This research aims to identify previously undisclosed genetic variants associated with an increased risk of CRC by employing next-generation sequencing technology. Genomic DNA was extracted from blood specimens of five CRC patients. The sequencing data of the samples are utilized for variant identification. In addition, the Integrative Genomic Viewer software (IGV) is used to visualize the identified variants. Furthermore, various in silico tools, including Mutation Taster and Align GVGD, are used to predict the potential impact of mutations on structural features and protein function. Based on the findings of this research, 12 different genetic variations are detected among individuals with CRC. Inherited variations are located within the following genes: MSH6, MSH2, PTPRJ, PMS2, TP53, BRAF, APC, and PIK3CA.