Regularity of sections of CR vector bundles

B. Lamel, N. Mir
{"title":"Regularity of sections of CR vector bundles","authors":"B. Lamel, N. Mir","doi":"10.1090/bproc/149","DOIUrl":null,"url":null,"abstract":"<p>In this note, we show that every generalized section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a CR vector bundle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a CR manifold <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M\">\n <mml:semantics>\n <mml:mi>M</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">M</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> has the property that near most points of its singular support, there exists a proper abstract CR subbundle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F subset-of upper E\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>F</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mi>E</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">F \\subset E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which has the property that every <italic>real</italic> subbundle of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> which contains the image of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> also contains <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F\">\n <mml:semantics>\n <mml:mi>F</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">F</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"33 S1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we show that every generalized section σ \sigma of a CR vector bundle E E over a CR manifold M M has the property that near most points of its singular support, there exists a proper abstract CR subbundle F E F \subset E which has the property that every real subbundle of E E which contains the image of σ \sigma also contains F F .

CR 向量束截面的正则性
在本注释中,我们证明了在 CR 流形 M M 上 CR 向量束 E E 的每个广义截面 σ \sigma 都具有这样的性质:在其奇异支持的大部分点附近,存在一个适当的抽象 CR 子束带 F ⊂ E F \subset E,它具有这样的性质:E E 的每个包含 σ \sigma 的像的实子束带也包含 F F。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信