{"title":"Narrowing lab-to-market gaps: Device innovations in fuel generation, solar-cell, and photodetection","authors":"Sukanta Nandi, Raaghesh Vijayan, Manjeet Chhetri","doi":"10.1002/appl.202300109","DOIUrl":null,"url":null,"abstract":"<p>Academic translational research efforts to industry are often an underlying sought-after goal among various researchers. Through the interchanges of research endeavors between academia-industry, great innovations can/has been achieved that cater to the real-world application by bridging “industrially relevant” problem solving with pursuing fundamental studies. It is pertinent that most of the studies from university-level research works may not translate into demonstrable market products due to various reasons. Funding support, individual researcher goals, socioeconomic factors, and most importantly the technical know-how of generating revenue strategies for startups, are a few of the factors that have slowed the pace of collaborative efforts. However, we believe that the most crucial component is the identification of the critical parameters that solve long-standing problems that hinder the scale-up of the lab scale research into marketable products considering the techno-economic analysis. To illustrate this, we take the three most relevant examples of devices for fuel generation, devices to utilize solar radiation, and devices for detection and other related applications. In this perspective, we provide an in-depth case study of each of these critical parameters to comment on the direction of research avenues that can serve as step-stones for the commercialization of university-level lab research studies.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202300109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Academic translational research efforts to industry are often an underlying sought-after goal among various researchers. Through the interchanges of research endeavors between academia-industry, great innovations can/has been achieved that cater to the real-world application by bridging “industrially relevant” problem solving with pursuing fundamental studies. It is pertinent that most of the studies from university-level research works may not translate into demonstrable market products due to various reasons. Funding support, individual researcher goals, socioeconomic factors, and most importantly the technical know-how of generating revenue strategies for startups, are a few of the factors that have slowed the pace of collaborative efforts. However, we believe that the most crucial component is the identification of the critical parameters that solve long-standing problems that hinder the scale-up of the lab scale research into marketable products considering the techno-economic analysis. To illustrate this, we take the three most relevant examples of devices for fuel generation, devices to utilize solar radiation, and devices for detection and other related applications. In this perspective, we provide an in-depth case study of each of these critical parameters to comment on the direction of research avenues that can serve as step-stones for the commercialization of university-level lab research studies.