Extensions of the operator Bellman and operator Holder type inequalities

IF 1.1 Q1 MATHEMATICS
M. Bakherad, F. Kittaneh
{"title":"Extensions of the operator Bellman and operator Holder type inequalities","authors":"M. Bakherad, F. Kittaneh","doi":"10.33205/cma.1435944","DOIUrl":null,"url":null,"abstract":"In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\\\"{o}lder type inequalities. Among other results, it is shown that if $\\mathbf{A}=(A_t)_{t\\in \\Omega}$ and $\\mathbf{B}=(B_t)_{t\\in \\Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\\mathscr A}$ such that $\\int_{\\Omega}A_t\\,d\\mu(t)\\leq I_{\\mathscr A}$ and $\\int_{\\Omega}B_t\\,d\\mu(t)\\leq I_{\\mathscr A}$, and if $\\omega_f$ is an arbitrary operator mean with the representing function $f$, then\n \\begin{align*}\n \\left(I_{\\mathscr A}-\\int_{\\Omega}(A_t \\omega_f B_t)\\,d\\mu(t)\\right)^p\n \\geq\\left(I_{\\mathscr A}-\\int_{\\Omega}A_t\\,d\\mu(t)\\right) \\omega_{f^p}\\left(I_{\\mathscr A}-\\int_{\\Omega}B_t\\,d\\mu(t)\\right)\n \\end{align*}\n for all $0 < p \\leq 1$, which is an extension of the operator Bellman inequality.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1435944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\"{o}lder type inequalities. Among other results, it is shown that if $\mathbf{A}=(A_t)_{t\in \Omega}$ and $\mathbf{B}=(B_t)_{t\in \Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\mathscr A}$ such that $\int_{\Omega}A_t\,d\mu(t)\leq I_{\mathscr A}$ and $\int_{\Omega}B_t\,d\mu(t)\leq I_{\mathscr A}$, and if $\omega_f$ is an arbitrary operator mean with the representing function $f$, then \begin{align*} \left(I_{\mathscr A}-\int_{\Omega}(A_t \omega_f B_t)\,d\mu(t)\right)^p \geq\left(I_{\mathscr A}-\int_{\Omega}A_t\,d\mu(t)\right) \omega_{f^p}\left(I_{\mathscr A}-\int_{\Omega}B_t\,d\mu(t)\right) \end{align*} for all $0 < p \leq 1$, which is an extension of the operator Bellman inequality.
算子贝尔曼不等式和算子霍尔德不等式的扩展
在本文中,我们运用算子手段的概念以及一些算子技术,建立了新的算子贝尔曼不等式和算子霍德尔不等式。除其他结果外,本文还证明了如果 $\mathbf{A}=(A_t)_{t\in \Omega}$ 和 $\mathbf{B}=(B_t)_{t\in \Omega}$ 是一元 $C^*$ 代数 ${\mathscr A}$ 中正可逆算子的连续域,使得 $\int_{\Omega}A_t\、和 $int_{{Omega}B_t\,d\mu(t)\leq I_{{mathscr A}$,并且如果 $omega_f$ 是一个任意算子均值与代表函数 $f$,那么 \begin{align*}\left(I_{\mathscr A}-\int_{\Omega}(A_t \omega_f B_t)\,d\mu(t)\right)^p \geq\left(I_{\mathscr A}-\int_{\Omega}A_t\、d\mu(t)\right) \omega_{f^p}\left(I_{\mathscr A}-\int_{\Omega}B_t\,d\mu(t)\right) \end{align*} for all $0 < p \leq 1$,这是算子贝尔曼不等式的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Constructive Mathematical Analysis
Constructive Mathematical Analysis Mathematics-Analysis
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信