{"title":"Extensions of the operator Bellman and operator Holder type inequalities","authors":"M. Bakherad, F. Kittaneh","doi":"10.33205/cma.1435944","DOIUrl":null,"url":null,"abstract":"In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\\\"{o}lder type inequalities. Among other results, it is shown that if $\\mathbf{A}=(A_t)_{t\\in \\Omega}$ and $\\mathbf{B}=(B_t)_{t\\in \\Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\\mathscr A}$ such that $\\int_{\\Omega}A_t\\,d\\mu(t)\\leq I_{\\mathscr A}$ and $\\int_{\\Omega}B_t\\,d\\mu(t)\\leq I_{\\mathscr A}$, and if $\\omega_f$ is an arbitrary operator mean with the representing function $f$, then\n \\begin{align*}\n \\left(I_{\\mathscr A}-\\int_{\\Omega}(A_t \\omega_f B_t)\\,d\\mu(t)\\right)^p\n \\geq\\left(I_{\\mathscr A}-\\int_{\\Omega}A_t\\,d\\mu(t)\\right) \\omega_{f^p}\\left(I_{\\mathscr A}-\\int_{\\Omega}B_t\\,d\\mu(t)\\right)\n \\end{align*}\n for all $0 < p \\leq 1$, which is an extension of the operator Bellman inequality.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1435944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator H\"{o}lder type inequalities. Among other results, it is shown that if $\mathbf{A}=(A_t)_{t\in \Omega}$ and $\mathbf{B}=(B_t)_{t\in \Omega}$ are continuous fields of positive invertible operators in a unital $C^*$-algebra ${\mathscr A}$ such that $\int_{\Omega}A_t\,d\mu(t)\leq I_{\mathscr A}$ and $\int_{\Omega}B_t\,d\mu(t)\leq I_{\mathscr A}$, and if $\omega_f$ is an arbitrary operator mean with the representing function $f$, then
\begin{align*}
\left(I_{\mathscr A}-\int_{\Omega}(A_t \omega_f B_t)\,d\mu(t)\right)^p
\geq\left(I_{\mathscr A}-\int_{\Omega}A_t\,d\mu(t)\right) \omega_{f^p}\left(I_{\mathscr A}-\int_{\Omega}B_t\,d\mu(t)\right)
\end{align*}
for all $0 < p \leq 1$, which is an extension of the operator Bellman inequality.