Metropolis criterion pigeon-inspired optimization for multi-UAV swarm controller

Jinghua Guan, Hongfei Cheng
{"title":"Metropolis criterion pigeon-inspired optimization for multi-UAV swarm controller","authors":"Jinghua Guan, Hongfei Cheng","doi":"10.20517/ir.2024.04","DOIUrl":null,"url":null,"abstract":"This paper presents a new multiple unmanned aerial vehicle swarm controller based on Metropolis criterion. This paper presents the design of a controller, utilizing the improved Metropolis criterion pigeon-inspired optimization (IMCPIO) and proportional-integrational-derivative (PID) algorithms, and conducts comparative experiments. Simulation outcomes demonstrate the enhanced performance of the multi-unmanned aerial vehicle formation controller, which is based on IMCPIO, when compared to the basic pigeon-inspired optimization (PIO) algorithm and the genetic algorithm. The IMCPIO algorithm for the energy difference discrimination makes it a faster convergence and more stable effective optimization. Hence, the controller introduced in this study proves to be both practical and resilient.","PeriodicalId":426514,"journal":{"name":"Intelligence & Robotics","volume":"33 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ir.2024.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new multiple unmanned aerial vehicle swarm controller based on Metropolis criterion. This paper presents the design of a controller, utilizing the improved Metropolis criterion pigeon-inspired optimization (IMCPIO) and proportional-integrational-derivative (PID) algorithms, and conducts comparative experiments. Simulation outcomes demonstrate the enhanced performance of the multi-unmanned aerial vehicle formation controller, which is based on IMCPIO, when compared to the basic pigeon-inspired optimization (PIO) algorithm and the genetic algorithm. The IMCPIO algorithm for the energy difference discrimination makes it a faster convergence and more stable effective optimization. Hence, the controller introduced in this study proves to be both practical and resilient.
多无人飞行器蜂群控制器的 Metropolis 准则鸽子启发优化
本文提出了一种基于 Metropolis 准则的新型多无人机蜂群控制器。本文介绍了利用改进的 Metropolis 准则鸽启发优化(IMCPIO)和比例积分派生(PID)算法设计的控制器,并进行了对比实验。仿真结果表明,与基本的鸽子启发优化(PIO)算法和遗传算法相比,基于 IMCPIO 的多无人机编队控制器的性能有所提高。采用 IMCPIO 算法进行能量差值判别,收敛速度更快,优化效果更稳定。因此,本研究中引入的控制器被证明既实用又有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信