{"title":"The Sensitivity of Supercell Cold Pools to the Lifting Condensation Level and the Predicted Particle Properties Microphysics Scheme","authors":"S. Murdzek, Yvette P. Richardson, P. Markowski","doi":"10.1175/mwr-d-23-0092.1","DOIUrl":null,"url":null,"abstract":"\nPrevious work found that cold pools in ordinary convection are more sensitive to the microphysics scheme when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysical uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL. Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs, though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0092.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous work found that cold pools in ordinary convection are more sensitive to the microphysics scheme when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysical uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL. Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs, though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.