John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Pan Xu, Yifan Xu
{"title":"Matching Tasks and Workers under Known Arrival Distributions: Online Task Assignment with Two-sided Arrivals","authors":"John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Pan Xu, Yifan Xu","doi":"10.1145/3652021","DOIUrl":null,"url":null,"abstract":"\n Efficient allocation of tasks to workers is a central problem in crowdsourcing. In this paper, we consider a setting inspired by spatial crowdsourcing platforms, where both workers and tasks arrive at different times, and each worker-task assignment yields a given reward. The key challenge is to address the uncertainty in the stochastic arrivals from both workers and the tasks. In this work, we consider a ubiquitous scenario where the arrival patterns of worker “types” and task “types” are not erratic but can be predicted from historical data. Specifically, we consider a finite time horizon\n T\n and assume that in each time-step the arrival of a worker and a task can be seen as an independent sample from two (different) distributions.\n \n \n Our model, called\n Online Task Assignment with Two-Sided Arrival\n (OTA-TSA), is a significant generalization of the classical online task assignment problem when all the tasks are statically available. For the general case of OTA-TSA, we present an optimal non-adaptive algorithm (NADAP), which achieves a competitive ratio (CR) of at least 0.295. For a special case of OTA-TSA when the reward depends only on the worker type, we present two adaptive algorithms, which achieve CRs of at least 0.343 and 0.355, respectively. On the hardness side, we show that (1) no non-adaptive can achieve a CR larger than that of NADAP, establishing the optimality of NADAP among all non-adaptive algorithms; and (2) no (adaptive) algorithm can achieve a CR better than 0.581 (unconditionally) or 0.423 (conditionally on the benchmark linear program), respectively. All aforementioned negative results apply to even unweighted OTA-TSA when every assignment yields a uniform reward. At the heart of our analysis is a new technical tool, called\n two-stage birth-death process\n , which is a refined notion of the classical birth-death process. We believe it may be of independent interest. Finally, we perform extensive numerical experiments on a real-world rideshare dataset collected in Chicago and a synthetic dataset, and results demonstrate the effectiveness of our proposed algorithms in practice.\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"28 13","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3652021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient allocation of tasks to workers is a central problem in crowdsourcing. In this paper, we consider a setting inspired by spatial crowdsourcing platforms, where both workers and tasks arrive at different times, and each worker-task assignment yields a given reward. The key challenge is to address the uncertainty in the stochastic arrivals from both workers and the tasks. In this work, we consider a ubiquitous scenario where the arrival patterns of worker “types” and task “types” are not erratic but can be predicted from historical data. Specifically, we consider a finite time horizon
T
and assume that in each time-step the arrival of a worker and a task can be seen as an independent sample from two (different) distributions.
Our model, called
Online Task Assignment with Two-Sided Arrival
(OTA-TSA), is a significant generalization of the classical online task assignment problem when all the tasks are statically available. For the general case of OTA-TSA, we present an optimal non-adaptive algorithm (NADAP), which achieves a competitive ratio (CR) of at least 0.295. For a special case of OTA-TSA when the reward depends only on the worker type, we present two adaptive algorithms, which achieve CRs of at least 0.343 and 0.355, respectively. On the hardness side, we show that (1) no non-adaptive can achieve a CR larger than that of NADAP, establishing the optimality of NADAP among all non-adaptive algorithms; and (2) no (adaptive) algorithm can achieve a CR better than 0.581 (unconditionally) or 0.423 (conditionally on the benchmark linear program), respectively. All aforementioned negative results apply to even unweighted OTA-TSA when every assignment yields a uniform reward. At the heart of our analysis is a new technical tool, called
two-stage birth-death process
, which is a refined notion of the classical birth-death process. We believe it may be of independent interest. Finally, we perform extensive numerical experiments on a real-world rideshare dataset collected in Chicago and a synthetic dataset, and results demonstrate the effectiveness of our proposed algorithms in practice.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.