S. Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, F. Hazzazi, Yazeed Yasin Ghadi, Saeed Mostafaei, S. Roshani
{"title":"Design of a Microwave Quadrature Hybrid Coupler with Harmonic Suppression Using Artificial Neural Networks","authors":"S. Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, F. Hazzazi, Yazeed Yasin Ghadi, Saeed Mostafaei, S. Roshani","doi":"10.1155/2024/8722642","DOIUrl":null,"url":null,"abstract":"In this paper, a compact and simple structure of an elliptic microstrip lowpass filter (LPF) is designed for harmonic suppression in microwave quadrature hybrid coupler (QHC) applications. A radial resonator and a rectangular resonator are used to produce an elliptic LPF. The proposed LPF is used on the outer sides of the branch line coupler, which has improved the coupler harmonic suppression. Furthermore, artificial neural networks (ANNs) are incorporated to improve the LPF design process. The LPF best structure is obtained using the proposed ANN model. The proposed LPF has a compact size, which only occupies 16.4 mm × 7.3 mm equals to 0.164 λg × 0.073 λg, has a cut frequency of 2.2 GHz, and shows a sharp transmission band with a roll-off rate of 158.3 dB/GHz. Finally, the deigned QHC operates correctly at 1 GHz, which shows high harmonic suppression ability. The proposed QHC provides wide suppression band from 2.25 GHz up to more than 14 GHz, which can effectively suppress 3rd, to 14th harmonics. The proposed coupler features desirable parameters of S11, S21, S31, and S41, with magnitude of −21 dB, −3.4 dB, −3.3 dB, and −22.5 dB, at the operating frequency. The proposed approach mitigates the complexity of the circuit fabrication, compared with the previous methods while achieved desirable performances for the proposed QHC.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8722642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a compact and simple structure of an elliptic microstrip lowpass filter (LPF) is designed for harmonic suppression in microwave quadrature hybrid coupler (QHC) applications. A radial resonator and a rectangular resonator are used to produce an elliptic LPF. The proposed LPF is used on the outer sides of the branch line coupler, which has improved the coupler harmonic suppression. Furthermore, artificial neural networks (ANNs) are incorporated to improve the LPF design process. The LPF best structure is obtained using the proposed ANN model. The proposed LPF has a compact size, which only occupies 16.4 mm × 7.3 mm equals to 0.164 λg × 0.073 λg, has a cut frequency of 2.2 GHz, and shows a sharp transmission band with a roll-off rate of 158.3 dB/GHz. Finally, the deigned QHC operates correctly at 1 GHz, which shows high harmonic suppression ability. The proposed QHC provides wide suppression band from 2.25 GHz up to more than 14 GHz, which can effectively suppress 3rd, to 14th harmonics. The proposed coupler features desirable parameters of S11, S21, S31, and S41, with magnitude of −21 dB, −3.4 dB, −3.3 dB, and −22.5 dB, at the operating frequency. The proposed approach mitigates the complexity of the circuit fabrication, compared with the previous methods while achieved desirable performances for the proposed QHC.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.