Empirical Wavelet Transform Based ECG Signal Filtering Method

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
S. Elouaham, A. Dliou, W. Jenkal, M. Louzazni, H. Zougagh, S. Dlimi
{"title":"Empirical Wavelet Transform Based ECG Signal Filtering Method","authors":"S. Elouaham, A. Dliou, W. Jenkal, M. Louzazni, H. Zougagh, S. Dlimi","doi":"10.1155/2024/9050909","DOIUrl":null,"url":null,"abstract":"The electrocardiogram (ECG) is a diagnostic tool that provides insights into the heart’s electrical activity and overall health. However, internal and external noises complicate accurate heart issue diagnosis. Noise in the ECG signal distorts and introduces artifacts, making it difficult to detect subtle abnormalities. To ensure an accurate evaluation, noise-free ECG signals are crucial. This study introduces the empirical wavelet transform (EWT), a contemporary denoising method. EWT decomposes the signal into frequency components, allowing detailed analysis by constructing a customized wavelet basis. Researchers and practitioners can enhance signal analysis by separating the desired components from unwanted noise. The EWT approach effectively eliminates noise while maintaining signal information. The study applies DWT-ADTF, FST, Kalman, Liouville–Weyl fractional compound integral filter LW, Weiner, and EWT denoising methods to two ECG databases from MIT-BIH, which encompass a wide range of cardiac signals and noise levels. The comparative analysis highlights EWT’s strengths through improved signal quality and objective performance metrics. This adaptive transform proves promising for denoising ECG signals and facilitating accurate analysis in clinical and research settings.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9050909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocardiogram (ECG) is a diagnostic tool that provides insights into the heart’s electrical activity and overall health. However, internal and external noises complicate accurate heart issue diagnosis. Noise in the ECG signal distorts and introduces artifacts, making it difficult to detect subtle abnormalities. To ensure an accurate evaluation, noise-free ECG signals are crucial. This study introduces the empirical wavelet transform (EWT), a contemporary denoising method. EWT decomposes the signal into frequency components, allowing detailed analysis by constructing a customized wavelet basis. Researchers and practitioners can enhance signal analysis by separating the desired components from unwanted noise. The EWT approach effectively eliminates noise while maintaining signal information. The study applies DWT-ADTF, FST, Kalman, Liouville–Weyl fractional compound integral filter LW, Weiner, and EWT denoising methods to two ECG databases from MIT-BIH, which encompass a wide range of cardiac signals and noise levels. The comparative analysis highlights EWT’s strengths through improved signal quality and objective performance metrics. This adaptive transform proves promising for denoising ECG signals and facilitating accurate analysis in clinical and research settings.
基于经验小波变换的心电信号滤波方法
心电图(ECG)是一种诊断工具,可帮助人们了解心脏的电活动和整体健康状况。然而,内部和外部噪音使准确诊断心脏问题变得复杂。心电信号中的噪音会扭曲和引入伪影,从而难以检测到细微的异常。为确保准确评估,无噪声心电信号至关重要。本研究引入了经验小波变换(EWT)这一当代去噪方法。EWT 将信号分解为频率成分,通过构建定制的小波基础进行详细分析。研究人员和从业人员可以通过将所需分量与不需要的噪声分离,来加强信号分析。EWT 方法能有效消除噪声,同时保留信号信息。本研究将 DWT-ADTF、FST、卡尔曼、Liouville-Weyl 分数复合积分滤波器 LW、Weiner 和 EWT 去噪方法应用于麻省理工学院-美国国立卫生研究院的两个心电图数据库,这些数据库涵盖了各种心脏信号和噪声水平。对比分析通过改善信号质量和客观性能指标,凸显了 EWT 的优势。事实证明,这种自适应变换有望对心电图信号进行去噪处理,并促进临床和研究环境中的精确分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信