Klasterisasi Tingkat Kemiskinan di Indonesia menggunakan Algoritma K-Means

Assyifa Khalif, A. Hasanah, M. Ridwan, Betha Nurina Sari
{"title":"Klasterisasi Tingkat Kemiskinan di Indonesia menggunakan Algoritma K-Means","authors":"Assyifa Khalif, A. Hasanah, M. Ridwan, Betha Nurina Sari","doi":"10.29407/gj.v8i1.21470","DOIUrl":null,"url":null,"abstract":"Poverty is one of the deep social challenges around the world and is a major focus in the global development agenda. This article discusses the role of clustering methods in analyzing and understanding poverty issues. We use data from Statistics Indonesia (BPS) on 34 provinces in Indonesia to classify groups of people who are vulnerable to poverty. Clustering analysis helps us identify characteristics that may be overlooked by conventional approaches, which in turn enables the development of more targeted and effective solutions to poverty. We use the K-Means method in our analysis and present it within the framework of the CRISP-DM methodology. The results show that almost 95% of the poor in Indonesia belong to the 'Poor' group. Therefore, we recommend effective actions based on indicators that are the main factors of poverty, as well as designing specific policies for regions with similar characteristics. This article aims to contribute to the global effort to end poverty and achieve the vision of equitable and inclusive sustainable development.","PeriodicalId":200108,"journal":{"name":"Generation Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Generation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29407/gj.v8i1.21470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Poverty is one of the deep social challenges around the world and is a major focus in the global development agenda. This article discusses the role of clustering methods in analyzing and understanding poverty issues. We use data from Statistics Indonesia (BPS) on 34 provinces in Indonesia to classify groups of people who are vulnerable to poverty. Clustering analysis helps us identify characteristics that may be overlooked by conventional approaches, which in turn enables the development of more targeted and effective solutions to poverty. We use the K-Means method in our analysis and present it within the framework of the CRISP-DM methodology. The results show that almost 95% of the poor in Indonesia belong to the 'Poor' group. Therefore, we recommend effective actions based on indicators that are the main factors of poverty, as well as designing specific policies for regions with similar characteristics. This article aims to contribute to the global effort to end poverty and achieve the vision of equitable and inclusive sustainable development.
使用 K-Means 算法对印度尼西亚的贫困水平进行聚类
贫困是全世界深层次的社会挑战之一,也是全球发展议程的主要焦点。本文讨论了聚类方法在分析和理解贫困问题中的作用。我们利用印度尼西亚统计局(BPS)关于印度尼西亚 34 个省的数据,对易陷入贫困的人群进行分类。聚类分析可以帮助我们识别传统方法可能忽略的特征,进而制定出更有针对性、更有效的贫困解决方案。我们在分析中使用了 K-Means 方法,并在 CRISP-DM 方法的框架内进行了介绍。结果显示,印度尼西亚近 95% 的贫困人口属于 "贫困 "群体。因此,我们建议根据贫困的主要因素指标采取有效行动,并为具有类似特征的地区设计具体政策。本文旨在为全球消除贫困和实现公平、包容的可持续发展愿景做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信