CM points, class numbers, and the Mahler measures of 𝑥³+𝑦³+1-𝑘𝑥𝑦

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zhengyu Tao, Xuejun Guo
{"title":"CM points, class numbers, and the Mahler measures of 𝑥³+𝑦³+1-𝑘𝑥𝑦","authors":"Zhengyu Tao, Xuejun Guo","doi":"10.1090/mcom/3961","DOIUrl":null,"url":null,"abstract":"<p>We study the Mahler measures of the polynomial family <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript k Baseline left-parenthesis x comma y right-parenthesis equals x cubed plus y cubed plus 1 minus k x y\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi>x</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:msup>\n <mml:mi>y</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mi>x</mml:mi>\n <mml:mi>y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_k(x,y) = x^3+y^3+1-kxy</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> using the method previously developed by the authors. An algorithm is implemented to search for complex multiplication points with class numbers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"less-than-or-slanted-equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo>⩽<!-- ⩽ --></mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\leqslant 3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we employ these points to derive interesting formulas that link the Mahler measures of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript k Baseline left-parenthesis x comma y right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_k(x,y)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-values of modular forms. As by-products, some conjectural identities of Samart are confirmed, one of them involves the modified Mahler measure <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove n With tilde left-parenthesis k right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tilde {n}(k)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> introduced by Samart recently. For <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k equals NestedRootIndex 3 NestedStartRoot 729 plus-or-minus 405 StartRoot 3 EndRoot NestedEndRoot\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>k</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mroot>\n <mml:mrow>\n <mml:mn>729</mml:mn>\n <mml:mo>±<!-- ± --></mml:mo>\n <mml:mn>405</mml:mn>\n <mml:msqrt>\n <mml:mn>3</mml:mn>\n </mml:msqrt>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:mroot>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">k=\\sqrt [3]{729\\pm 405\\sqrt {3}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we also prove an equality that expresses a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 times 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>×<!-- × --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2\\times 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> determinant with entries the Mahler measures of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q Subscript k Baseline left-parenthesis x comma y right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>Q</mml:mi>\n <mml:mi>k</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>y</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Q_k(x,y)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as some multiple of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-value of two isogenous elliptic curves over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q left-parenthesis StartRoot 3 EndRoot right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msqrt>\n <mml:mn>3</mml:mn>\n </mml:msqrt>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}(\\sqrt {3})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"83 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Mahler measures of the polynomial family Q k ( x , y ) = x 3 + y 3 + 1 k x y Q_k(x,y) = x^3+y^3+1-kxy using the method previously developed by the authors. An algorithm is implemented to search for complex multiplication points with class numbers 3 \leqslant 3 , we employ these points to derive interesting formulas that link the Mahler measures of Q k ( x , y ) Q_k(x,y) to L L -values of modular forms. As by-products, some conjectural identities of Samart are confirmed, one of them involves the modified Mahler measure n ~ ( k ) \tilde {n}(k) introduced by Samart recently. For k = 729 ± 405 3 3 k=\sqrt [3]{729\pm 405\sqrt {3}} , we also prove an equality that expresses a 2 × 2 2\times 2 determinant with entries the Mahler measures of Q k ( x , y ) Q_k(x,y) as some multiple of the L L -value of two isogenous elliptic curves over Q ( 3 ) \mathbb {Q}(\sqrt {3}) .

CM点、类数和𝑥³+𝑦³+1-𝑘𝑥𝑦的马勒量纲
我们利用作者之前开发的方法研究了多项式族 Q k ( x , y ) = x 3 + y 3 + 1 - k x y Q_k(x,y) = x^3+y^3+1-kxy 的马勒度量。我们利用这些点推导出有趣的公式,将 Q k ( x , y ) Q_k(x,y) 的马勒度量与模块形式的 L L 值联系起来。作为副产品,萨马特的一些猜想得到了证实,其中之一涉及萨马特最近引入的修正马勒度量 n ~ ( k ) (tilde {n}(k))。对于 k = 729 ± 405 3 3 k=\sqrt [3]{729\pm 405\sqrt {3}} ,我们也证明了表示 n ~ ( k ) 的等式。 对于 k = 729 ± 405 3 3 k= (sqrt [3]{729\pm 405\sqrt {3}},我们还证明了一个等式,该等式将 Q k ( x , y ) 的马勒度量 Q_k(x,y)的 2 × 2 2 (times 2 )行列式表达为 Q ( 3 ) 上两个同源椭圆曲线的 L L - 值的某个倍数(\mathbb {Q}(\sqrt {3}))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信